Math, asked by Adhi123456, 10 months ago


If alpha and beta are the zeroes of a quadratic polynomial fx = kx2 + 4x +4 such that a2 + b2 = 24 find the value of k....someone send me the answer fast...

Answers

Answered by Anonymous
2

\red{\tt{\underline{\underline{Answer:}}}}

{\tt{The \ value \ of \ k \ is \ -1 \ or \ \frac{2}{3}}}

\orange{\tt{\underline{\underline{Given:}}}}

{\tt{The \ given \ polynomial \ is}}

{\implies{\tt{f(x)=kx^{2}+4x+4}}}

{\implies{\tt{\alpha \ and \ \beta \ are \ the \ zeroes}}}

{\implies{\tt{\alpha^{2}+\beta^{2}=24}}}

\pink{\tt{\underline{\underline{To \ find:}}}}

{\tt{The \ value \  of \ k.}}

\green{\tt{\underline{\underline{Solution:}}}}

{\tt{The \ given \ polynomial \ is}}

{\implies{\tt{f(x)=kx^{2}+4x+4}}}

{\tt{Here, \ a=k, \ b=4 \ and \ c=4}}

{\tt{Sum \ of \ zeroes=\frac{-b}{a}}}

{\tt{\therefore{\alpha+\beta=\frac{-4}{k}...(1)}}}

{\tt{Product \ of \ zeroes=\frac{c}{a}}}

{\tt{\therefore{\alpha\beta=\frac{4}{k}..(2)}}}

{\tt{According \ to \ identity}}

{\tt{a^{2}+b^{2}=(a+b)^{2}-2ab}}

{\tt{\therefore{\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2\alpha\beta}}}

{\tt{From \ (1) \ and \ (2)}}

{\tt{(\frac{-4}{k})^{2}-2\times\frac{4}{k}=24}}

{\tt{\therefore{\frac{16}{k^{2}}-\frac{8}{k}=24}}}

{\tt{\therefore{\frac{16-8k}{k^{2}}=24}}}

{\tt{\therefore{16-8k=24k^{2}}}}

{\tt{\therefore{24k^{2}+8k-16=0}}}

{\tt{Dividing \ equation \ throughout \ by \ 4}}

{\tt{\therefore{6k^{2}+2k-4=0}}}

{\tt{\therefore{6k^{2}+6k-4k-4=0}}}

{\tt{\therefore{6k(k+1)-4(k+1)=0}}}

{\tt{\therefore{(k+1)(6k-4)=0}}}

{\tt{\therefore{k=-1 \ or \ \frac{4}{6}}}}

{\tt{\therefore{k=-1 \ or \ \frac{2}{3}}}}

\purple{\tt{\therefore{The \ value \ of \ k \ is \ -1 \ or \ \frac{2}{3}}}}

Answered by TheSentinel
56

\color{darkblue}\underline{\underline{\sf Question}}

\rm{If \ \alpha \ and \ \beta \ are \ the \ zeroes \ of \ a \ quadratic}

\rm{ polynomial \ f(x) \ = \ k({x}^{2}+4x+4 \ Such}

\rm{  that \ {a}^{2}+{b}^{2}=24 \ find \ the \ value \ of \ k}

_________________________________________

\color{purple}\underline{\underline{\sf Answer:}}

\rm\pink{The \ value \ of \ k \ is \ -1 \ or \ \frac{2}{3}}

_________________________________________

\rm\green{\underline{\underline{Given:}}}

\rm{The \ given \ polynomial \ is}

{\rm{f(x)=kx^{2}+4x+4}}

{\rm{\alpha \ and \ \beta \ are \ the \ zeroes}}

{\rm{\alpha^{2}+\beta^{2}=24}}

_________________________________________

\orange{\rm{\underline{\underline{To \ find:}}}}

{\rm{The \ value \  of \ k}}

_________________________________________

\green{\rm{\underline{\underline{Solution:}}}}

{\rm{The \ given \ polynomial \ is}}

\rm{f(x)=kx^{2}+4x+4}

\rm{Here, \ a=k, \ b=4 \ and \ c=4}

{\rm{Sum \ of \ zeroes=\frac{-b}{a}}}

\rm{\alpha+\beta=\frac{-4}{k}...(a)}

\rm{Product \ of \ zeroes \ = \ \frac{c}{a}}

\rm{\alpha\beta=\frac{4}{k}...(b)}

{\rm{a^{2}+b^{2}=(a+b)^{2}-2ab}}

\rm{\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2\alpha\beta}

{\rm{From \ (a) \ and \ (b)}}

{\rm{(\frac{-4}{k})^{2}-2\times\frac{4}{k}=24}}

{\rm{\frac{16}{k^{2}}-\frac{8}{k}=24}}

{\rm{\frac{16-8k}{k^{2}}=24}}

{\rm{16-8k=24k^{2}}}

{\rm{24k^{2}+8k-16=0}}

{\rm{6k^{2}+2k-4=0}}

{\rm{6k^{2}+6k-4k-4=0}}

{\rm{6k(k+1)-4(k+1)=0}}

{\rm{(k+1)(6k-4)=0}}

{\rm{k=-1 \ or \ \frac{4}{6}}}

{\rm{k=-1 \ or \ \frac{2}{3}}}

\orange{\rm{The \ value \ of \ k \ is \ -1 \ or \ \frac{2}{3}}}

_________________________________________

\rm\pink{Hope \ it \ helps \ :))}

Similar questions