If alpha and beta are the zeroes of a quadratic polynomial fx = kx2 + 4x +4 such that a2 + b2 = 24 find the value of k
Answers
Answered by
3
Step-by-step explanation:
f(x)=kx^2+4x+4 a=k,b=4,c=4
a^2+b^2=24 alpha+beta=-4/k
(a+b)^2-2ab=24 alpha×beta=4/k
(-4/k)^2-2×4/k=24
16/k^2-8/k=24
16-8k/k^2=24
16-8k=24×k^2
8(2-k)=24k^2
2-k=24k^2/8
2-k=3k^2
0=3k^2+k-2
0=3k^2+3k-2k-2
0=3k(k+1)-2(k+1)
0=(3k-2)(k+1)
3k-2=0 k+1=0
k=2/3 k=-1
k=2/3 or -1
Answered by
29
Given:
kx² + 4x +4 is a polynomial ; whose zeroes are a and ß.
Sum of zeroes:
a + ß = -4/k
Product of zeroes:
aß = 4/k
(a + b)² = a² + b² + 2ab
⇒ (-4/k)² = 24 + 2(4/k)
⇒ 16/k² = 24 + 8/k
⇒ 24k² + 8k - 16 = 0
⇒ 3k² + k - 2 = 0
⇒ 3k² + 3k - 2k -2 = 0
⇒ 3k(k + 1) - 2(k+1) = 0
⇒ (k + 1) (3k - 2) = 0
⇒ k = -1 or k = 2/3
Hence, the value of k is -1 or 2/3.
Similar questions
English,
7 months ago
Math,
7 months ago
Computer Science,
1 year ago
Hindi,
1 year ago
Math,
1 year ago