Math, asked by dhruvjrocks, 10 months ago

if alpha and beta are the zeroes of n^2 - n - 2 = 0 find another polynomial whose zeroes are 2 alpha and 2 beta​

Answers

Answered by Anonymous
9

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

if α and β are the zeroes of n² - n - 2 = 0 find another polynomial whose zeroes are

2α and 2β .

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • Equation, n² - n -2 = 0 .........(1)
  • α and β are zeroes .

\Large{\underline{\mathfrak{\bf{Given}}}}

  • Polynomial whose zeroes are 2α and 2β

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

we know,

\small\boxed{\sf{\:sum\:of\:zeroes\:=\:\dfrac{-(coefficient\:of\:n)}{(coefficient\:of\:n^2)}}}

\mapsto\sf{\:(\alpha + \beta)\:=\:\dfrac{-(-1)}{1}} \\ \\ \mapsto\sf{\:(\alpha + \beta)\:=\:1.......(1)}

Again,

\small\boxed{\sf{\:product\:of\:zeroes\:=\:\dfrac{(constant\:part)}{(coefficient\:of\:n^2)}}}

\mapsto\sf{\:\alpha.\beta\:=\:\dfrac{(-2)}{1}} \\ \\ \mapsto\sf{\:\alpha.\beta\:=\:-2......(2)}

we have,

\small\boxed{\sf{\:(\alpha - \beta)\:=\:\sqrt{(\alpha + \beta)^2-4.\alpha.\beta}}} \\ \\ \small\sf{\:\:\:\:keep\:value\:by\:equ(1)\:and\:equ(2)} \\ \\ \mapsto\sf{\:(\alpha-\beta)\:=\:\sqrt{(1)^2-4.(-2)}} \\ \\ \mapsto\sf{\:(\alpha-\beta)\:=\:\sqrt{1+8}} \\ \\ \mapsto\sf{\:(\alpha-\beta)\:=\:\sqrt{9}} \\ \\ \mapsto\sf{\:(\alpha-\beta)\:=\:3.....(3)}

Add equ(1) and equ(3),

\mapsto\sf{\:2.\alpha\:=\:4} \\ \\ \mapsto\sf{\:\alpha\:=\:\dfrac{4}{2}} \\ \\ \mapsto\sf{\:\alpha\:=\:2}

Keep value of α in equ(1),

\mapsto\sf{\:(2+\beta)\:=\:1} \\ \\ \mapsto\sf{\:\beta\:=\:1-2} \\ \\ \mapsto\sf{\:\beta\:=\:-1}

\Large{\underline{\mathfrak{\bf{Thus}}}}

  • Value of 2α = 2×2 = 4
  • Value of 2β = 2 × -1 = -2

Now, calculate another equation, whose zeroes are 2α and 2β

Formula of equation:-

\small\boxed{\sf{\:n^2-(sum\:of\:zeroes)n+(product\:of\:zeroes)\:=\:0}}

★ Sum of zeroes (2α +2β ) = 4 - 2 = 2

★ product of zeroes = 2α . 2β = 4× -2 = -8

Required equation :-

\mapsto\sf{\red{\:n^2 - 2n - 8\:=\:0}}

Similar questions