Math, asked by triloksharma040, 1 year ago

if alpha and beta are the zeroes of p(x) = 4x^2+4x-1, then find
the value of 1÷alpha and 1÷beta​


Anonymous: is it 1/Alfa ± 1/Beta .... or 1/Alfa and 1/Beta
triloksharma040: 1/ alpha + 1/ beta

Answers

Answered by Anonymous
4

Answer \:  \\  \\ Given \:  \: Quadratic \: Polynomial \:  \: is \\  \\ p(x) = 4x {}^{2}  + 4x - 1 \\  \\  \alpha  +  \beta  =  \frac{ - 4}{4}  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:   \alpha  \beta  =  \frac{ - 1}{4}  \\  \\  \alpha  +  \beta  =  - 1 \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \alpha  \beta  =  \frac{ - 1}{4}  \\  \\  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha  +   \beta  }{ \alpha  \beta }  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ - 1}{ \frac{ - 1}{4} }  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  = 4 \\  \\ therefore \:  \:  \:  \:  \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  = 4 \\  \\ Note \:  \\  \\ for \: a \: General \:  \: Quadratic \: polynomial \: say \\  \\ f(x) = ax {}^{2}  + bx + c \\  \\  \alpha  +  \beta  =  \frac{ - b}{a}  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \alpha  \beta  =  \frac{c}{a}

Similar questions