Math, asked by ishita5835, 9 months ago

if alpha and beta are the zeroes of p(x) such that alpha +beta=24 and alpha-beta=8. Find quadratic polynomial having alpha and beta as its zeroes.​

Answers

Answered by rishu6845
4

Answer:

 \boxed{\huge{{x}^{2}  - 24x + 128}}

Step-by-step explanation:

\bold{Given}\longrightarrow \\  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: p(x) \: such \: that \\  \alpha  +  \beta  = 24 \\  \alpha  -  \beta  = 8

\bold{To \: find}\longrightarrow \\ find \: p(x)

\bold{Concept \: used}\longrightarrow \\ 1)if \: we \: know \: the \: sum \: and \: product \: of \: zeroes \: then \\ polynomial \: is \\  {x}^{2}  - (sum \: of \: zeroes)x + product \: of \: zeroes

\bold{Solution}\longrightarrow \\  \alpha  +  \beta  = 24 ........(1)\\  \alpha  -  \beta  = 8..........(2)

adding \: both \: equation

 =  >  \alpha  +  \beta  +  \alpha  -  \beta  = 24 + 8 \\  =  > 2 \alpha  = 32 \\  =  >  \alpha  =  \dfrac{32}{2}  \\  =  >  \alpha  = 16 \\ putting \:  \alpha  = 16 \: in \: (1) \\  =  > 16 +  \beta  = 24 \\  =  >  \beta  = 24 - 16 \\  =  >  \beta  = 8 \\ now \\  \alpha  +  \beta  = 24 \\  \alpha  \beta  = 16 \times 8 = 128 \\ required \: polynomial \: is \\  {x}^{2}  - (sum \: of \: zeroes)x + product \: of \: zeroes \\  =  >  {x}^{2}  - (24)x + 128 \\  =  >  {x}^{2}  - 24x + 128

Answered by JanviMalhan
81

Given :

 \rm{ \alpha  \: and \:  \beta  \: are \: zeroes \: of \: p(x) \: in \: which} \\  \\  \alpha  +  \beta  = 24 \\  \\  \alpha  -  \beta  = 8 \\

To find:

 \rm{p(x)} \\  \\

Solution:

  \alpha  +  \beta  = 24....(1)  \\  \\  \alpha  -  \beta  = 8....(2) \\  \\  \implies \:  \alpha  +  \beta  +  \alpha  -  \beta  = 24 + 8 \\  \\  \implies \:  \: 2 \alpha  = 32 \\  \\  \implies \alpha  =  \cancel \frac{32}{2}  \\  \\  \implies \:  \alpha  = 16

 \sf{putting \: ( \alpha ) = 16 \: in \: (p)} \\  \\  \implies \: 16 +  \beta  = 24 \\  \\  \implies \:  \beta  = 24 - 16 \\  \\  \implies \:  \beta  = 8 \\  \\  \\  \rm \: now :  \\  \\  \alpha   +  \beta  = 24 \\  \\   \implies \alpha  \times  \beta  \: =  16 \times 8 = 128 \\  \\  \sf{required \: polynomial} \\  \\  {x}^{2}  - ( {24)}^{x}  + 128 \\  \\  =  {x}^{2}  - 24x + 128

Similar questions