Math, asked by sachin319, 1 year ago

if alpha and beta are the zeroes of p(x)=x2-8x+k and alpha2 +beta2=40 then findthe value of k

Answers

Answered by BrainlyHulk
193
Hola Friend ✋✋✋

p(x) = x² - 8x + k

Let 'a' be alpha and 'b' be beeta

a + b = 8

ab = k

a² + b² = 40

( a + b )² = 8²

a² + b² + 2ab = 64

40 + 2k = 64

2k = 24

k = 12

Hope it helps

Róunak: good one :)
BrainlyHulk: thanks bro
Róunak: :)
RehanAhmadXLX: :-)
Answered by rohitkumargupta
97
HELLO DEAR,

GIVEN THAT:-



given \\  { \alpha }^{2}  +  { \beta }^{2}  = 40................(1)




  \alpha  +  \beta  =   - \frac{( -b )}{a} \\    \alpha  +  \beta  =  -  \frac{ (-8 )}{1}  \\  =  >  \alpha  +  \beta  = 8 ..............(2)\\  =  >  \alpha  \times  \beta  =  \frac{c}{a}  \\  =  >  \alpha  \times  \beta  = k.................(3) \\  =  > ( \alpha  +  \beta )^{2}  =  {8}^{2} ...using(2) \\  =  >  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  = 64 \\  =  >  { \alpha }^{2}  +  { \beta }^{2}  = 64 - 2k......using(3) \\  =  > 40 = 64 - 2k........from(1) \\  =  >  2k = 64 - 40 \\  =  > 2k = 24 \\  =  > k =  \frac{24}{2}  = 12


I HOPE ITS HELP YOU DEAR,
THANKS


RehanAhmadXLX: :-)
Similar questions