Math, asked by AbhivadhyaSharma, 9 months ago

if alpha and beta are the zeroes of polynomial 2x^2-7x+3.find the value of 1/alpha+1/beta​

Answers

Answered by TheProphet
11

Solution :

We have quadratic polynomial p(x) = 2x² - 7x + 3 & as zero of the polynomial p(x) = 0;

\longrightarrow\sf{2x^{2} - 7x + 3=0}\\\\\longrightarrow\sf{2x^{2} - 6x - x +3=0}\\\\\longrightarrow\sf{2x(x-3) -1(x-3)=0}\\\\\longrightarrow\sf{(x-3)(2x-1)=0}\\\\\longrightarrow\sf{x-3=0\:\:\:Or\:\:\:2x-1=0}\\\\\longrightarrow\sf{x=3\:\:\:Or\:\:\:2x=1}\\\\\longrightarrow\bf{x=3\:\:\:Or\:\:\:x=1/2}

∴ α = 3 & β = 1/2 are the two zeroes of the given polynomial.

As we know that given polynomial compared with ax² + bx + c;

  • a = 2
  • b = -7
  • c = 3

\underline{\mathcal{SUM\:OF\:THE\:ZEROES\::}}

\mapsto\sf{\alpha +\beta =\dfrac{-b}{a} =\bigg\lgroup \dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^{2}} \bigg\rgroup }\\\\\\\mapsto\sf{3 + \dfrac{1}{2} }\\\\\\\mapsto\sf{\dfrac{6+1}{2} }\\\\\\\mapsto\bf{\dfrac{7}{2} }

\underline{\mathcal{PRODUCT\:OF\:THE\:ZEROES\::}}

\mapsto\sf{\alpha\times \beta =\dfrac{c}{a} =\bigg\lgroup \dfrac{Constant\:term}{Coefficient\:of\:x^{2}} \bigg\rgroup }\\\\\\\mapsto\sf{3 \times \dfrac{1}{2} }\\\\\\\mapsto\bf{\dfrac{3}{2}}

Now;

\longrightarrow\sf{\dfrac{1}{\alpha } +\dfrac{1}{\beta } }\\\\\\\longrightarrow\sf{\dfrac{\beta +\alpha }{\alpha \beta } }\\\\\\\longrightarrow\sf{\dfrac{\alpha +\beta }{\alpha \beta }}\\\\\\\longrightarrow\sf{\dfrac{7/2}{3/2} }\\\\\\\longrightarrow\sf{\dfrac{7}{\cancel{2}} \times \dfrac{\cancel{2}}{3} }\\\\\\\longrightarrow\boxed{\bf{\dfrac{7}{3} }}}

Thus;

The value of 1/α + 1/β will be 7/3 .

Answered by syed2020ashaels
1

According to the data in the question

We have to find the zero of polynomial and the value of expression

 \frac{1 }{ \alpha }  +  \frac{1}{ \beta }

Step-by-step explanation:

Given equation is 2x²-7x+3

STEP-1:

By using splitting method :

The general equation is ax²+bx+c

Given equation is 2x²-7x+3

Now compare equation and general equation,

a=2 ,b=-7 and c=3

STEP-2:

a×c = 6

b= -6×-1

STEP-3:

2x²-7x+3 = 0

Split the mid value ,

2x²-6x - x+3 = 0

(2x²-6x) -( x - 3) = 0

Take out the 2x common from the 1st term,

2x(x - 3) - 1(x - 3) = 0

Take out (x-3) Common

(x - 3)(2x - 1) = 0

The values of x are ,

x = 3 \: and \:  \frac{1}{2}

Here ,

 \alpha  = 3

 \beta  =  \frac{1}{2}

STEP-4:

\frac{1 }{ \alpha }  +  \frac{1}{ \beta }

Put the values , we get

\frac{1 }{ 3 }  +  \frac{1}{  \frac{1}{2}  }

Or

\frac{1 }{ 3 }  +  \frac{2}{ 1 }

Take LCM of 3 and 1 , we get the 3

 \frac{1 + 6}{3}

Add the values ,

 \frac{7}{3}

Hence ,

\frac{1 }{ \alpha }  +  \frac{1}{ \beta }  =\frac{1 }{ 3 }  +  \frac{1}{  \frac{1}{2}  }   =  \frac{7}{3}

Project code #SPJ2

https://brainly.in/question/21011554?referrer=searchResults

https://brainly.in/question/52324600?referrer=searchResults

Similar questions