if alpha and beta are the zeroes of polynomial 6x^2+x-1 then find the value of alfa upon beta plus beta upon alpha
Answers
Answered by
0
6x²+x-1=0
6x²+3x-2x-1=0
3x(2x+1)-1(2x-1)=0
(3x-1)(2x-1)=0
x=1/2,1/3
Alpha =1/2
Beta=1/3
Alpha/beta+beta/ Alpha= 1/2/1/3+ 1/3/1/2
= 3/2+2/3
= 9+4/6
= 13/6
= 2 1/6
6x²+3x-2x-1=0
3x(2x+1)-1(2x-1)=0
(3x-1)(2x-1)=0
x=1/2,1/3
Alpha =1/2
Beta=1/3
Alpha/beta+beta/ Alpha= 1/2/1/3+ 1/3/1/2
= 3/2+2/3
= 9+4/6
= 13/6
= 2 1/6
Answered by
0
_______________________
Given polynomial , 6x² + x - 1 = 0 -------- ( i )
And it's zeros α and β
To find the value of : α / β + β / α
Equation no ( i ) is Compared with ap² + bp + c = 0
Then we get ,
a = 6
b = 1
c = - 1
Now ,
Sum of the zeros , ( α + β ) = - b / a
= - ( 1 ) / 6
= - 1 / 6
And , Product of the zeros , ( α × β ) = c / a
= - 1 / 6
Now ,
α² + β²
= ( α + β )² - 2αβ
= ( - 1 / 6 )² - 2 × ( - 1 / 6 ) [ • Putting the values ]
= 1 / 36 + 1 / 3
= 1 + 12 / 36
= 13 / 36
Thus ,
α / β + β / α
= α² + β² / αβ
= ( 13 / 36 ) / ( - 1 / 6 ) [ • Putting the values ]
= - 13 / 36 × 6 / 1
= - 13 / 6 [ ★ Required answer ]
So , the value of the following is - 13 / 6.
●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●
Similar questions