if alpha and beta are the zeroes of polynomial fx = x^2-6x+k find value of k such that alpha^2 and beta^2 = 40
Answers
Answered by
2
x²-6x+k
α²+β²=40
(α+β)²-2αβ = 40
(-b/a)²-2(c/a) = 40
(--6/1)²-2(k/1)=40
6²-2k=40
36-2k= 40
-2k=40-36
-2k=4
k=-2
here is ur answer
α²+β²=40
(α+β)²-2αβ = 40
(-b/a)²-2(c/a) = 40
(--6/1)²-2(k/1)=40
6²-2k=40
36-2k= 40
-2k=40-36
-2k=4
k=-2
here is ur answer
tejasri2:
is it right
Similar questions