Math, asked by daris52, 1 month ago

If alpha and Beta are the zeroes of polynomial p(x) = ax² + bx+c (a is not equal to 0, c is not equal to 0), find the quadratic polynomial with zeroes (-1/alpha) and (-1/beta).​

Answers

Answered by hukam0685
8

Step-by-step explanation:

Given:

 p(x) = a {x}^{2}  + bx + c \\

where a and c≠0.

To find: Find the quadratic polynomial with zeroes \frac{-1}{\alpha}\: and\:\frac{-1}{\beta}.

Solution:

If \alpha\:and\:\betaare zeros of given polynomial ,then

 \alpha +   \beta =  \frac{ - b}{a} ...eq1  \\  \\  \alpha  \beta  =  \frac{c}{a} ...eq2 \\  \\

To find the polynomial having zeros \frac{-1}{\alpha}\: and\:\frac{-1}{\beta}.

Divide eq1 by eq2

 \frac{ \alpha  +  \beta }{ \alpha  \beta } =  \frac{ \frac{ - b}{a} }{ \frac{c}{a} }  \\  \\ or \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ - b}{c}...eq3  \\  \\

multiply eq3 by (-)

 -  \frac{1}{ \alpha }  -  \frac{1}{ \beta }  =  \frac{b}{c}  \\  \\

and

 \left( \frac{ - 1}{ \alpha } \right)\left( \frac{ - 1}{ \beta} \right) =  \frac{a}{c}  \\  \\  \frac{1}{ \alpha  \beta }  =  \frac{a}{c}  \\  \\

The polynomial is

 {x}^{2}  - \left(  - \frac{1}{ \alpha }  - \frac{1}{ \beta }  \right )x +  \frac{1}{ \alpha  \beta }  \\

or

 {x}^{2}  -  \frac{b}{c} x +  \frac{a}{c}  \\  \\

Take LCM and equate the polynomial to zero for simplification

 \frac{c {x}^{2} - bx + a }{c}  = 0 \\  \\ or \\  \\ c {x}^{2}  - bx + a = 0 \:  \\  \\

Thus, the quadratic polynomial is

c {x}^{2}  - bx + a \\

Final answer:

The quadratic polynomial with zeroes \frac{-1}{\alpha}\: and\:\frac{-1}{\beta} is \bold{\pink{c {x}^{2}  - bx + a}} .

Hope it helps you.

To learn more on brainly:

If √3 tan = 1 , find the value of sin 3A + Cos2A

https://brainly.in/question/42125800

Similar questions