Math, asked by sy5530922, 9 months ago

if alpha and beta are the zeroes of polynomial p(x)= x^2-px+q. find the value of alpha square+beta square​

Answers

Answered by abhi569
13

Answer:

p^2 - 2q

Step-by-step explanation:

Polynomials written in form of x^2 - Sx + P = 0 represent S as sum of their roots and P as product of roots. So, here if α and β are roots.

  sum of roots = α + β = p

  product of roots = αβ = q

⇒ α + β = p

⇒ ( α + β )^2 = ( p )^2

⇒ α^2 + β^2 + 2αβ = p^2

⇒ α^2 + β^2 + 2( q ) = p^2  { αβ = q }

⇒ α^2 + β^2 + 2q = p^2

⇒ α^2 + β^2 = p^2 -2q

Answered by Anonymous
46

Answer:

Given : \alpha and \beta are the zeroes of the polynomial \rm p(x)=x^2-px+q.

\rule{80}{0.8}

\underline{\bigstar\:\textsf{We Have to find the value of :}}

:\implies\sf \bigg(\alpha \bigg)^2+ \bigg(\beta\bigg)^2\\\\\\:\implies\sf \bigg(\alpha + \beta \bigg)^2 - 2\alpha \beta \\\\\\{\sf\qquad\because\:(a+b)^2=a^2+b^2+2ab}\\\\\\:\implies\sf\bigg(Sum\:of\: Zeroes\bigg)^2 -\bigg(2Product\:of\: Zeroes\bigg)\\\\\\:\implies\sf \bigg(\dfrac{-\:b}{a}\bigg)^2 - \bigg(2 \times \dfrac{c}{a}\bigg)\\\\\\{\sf\qquad\because\:a=1\quad b=-\:p\quad c=q}\\\\\\:\implies\sf \bigg(\dfrac{-\:(- p)}{1}\bigg)^2 - \bigg(2 \times \dfrac{q}{1}\bigg)\\\\\\:\implies\large\underline{\boxed{\sf p^2 - 2q}}

\therefore\:\underline{\textsf{Hence, required value of the given is \textbf{(p$^\text2$ - 2q)}}}.

\rule{180}{1.5}

\underline{\bigstar\:\textsf{Standard Form of Quadratic Polynomial :}}

\dashrightarrow\sf\:\:x^2-(Sum\:of\: Zeroes)x+(Product\: of\: Zeroes)=0\\\\\\\dashrightarrow\sf\:\:x^2-(\alpha+\beta)x+(\alpha\beta)=0

Similar questions