Math, asked by VanyaYadav1036, 1 month ago

If alpha and beta are the zeroes of polynomial p(x) = x² - 7x + 10, find the quadratic polynomial with zeroes (-alpha) and (-beta).​

Answers

Answered by somensingh43
44

Answer:

I hope this solution is help you.

Attachments:
Answered by SparklingBoy
75

------------------------------

♠ Given :-

\large \pmb{\sf{\alpha \: and \: \beta \: are \: zeros \: of \:polynomial}} : \\ \bf{x}^{2} -7x + 10

-------------------------------

♠ To Find :-

\sf{A \: Quadratic \:polynomial \: whose \: zeros \: are}: \\ \bf{-\alpha \: and \: - \beta }

-------------------------------

♠ Concept To Mind :-

\pmb{\mathfrak{For \: \text{A} \: Qudratic \:pol \text{y}nomial \: of \: \: the \: \: Form}} :\Large\bf a {x}^{2} + bx +c \\ \\ \large\sf{Sum \: of \: Zeros = - \dfrac{b}{a} } \\ \\ \large \sf{ Product \: of \: Zeros = \frac{c}{a} }

-------------------------------

♠ Solution :-

\pmb{As \: {\alpha \: and \: \beta \: are \: zeros \: of \:polynomial}} : \\ \bf{x}^{2} -7x + 10

\large \bigstar \:   \underline{ \pmb{ \mathfrak{ \text{H}ence , }}}\\

 \large \pmb{ \alpha + \beta = 7} \: \: \: \: - - - (1)

 \large \pmb{ \alpha \beta = 10} \: \: \: \: - - - (2)

\large \bigstar \:   \underline{ \pmb{ \mathfrak{ Now, }}}

For The Quadratic Polynomial having zeros - α and - β.

\large\sf{Sum \: of \: Zeros =S= - \alpha - \beta } \\ \\ =\large - (\alpha+\beta)\\\\

\large \bigstar \:   \underline{ \pmb{ \mathfrak{ Using \: \: (1 ) }}}

 \large:\longmapsto\pmb{ \boxed{ \boxed{S = - 7}}}

\large\sf{Product \: of \: Zeros =P= (- \alpha ) (- \beta )} \\ \\ = \large\alpha\beta\\\\ \large \bigstar \:   \underline{ \pmb{ \mathfrak{ Using \: \: (2) }}}\\

 \large:\longmapsto\pmb{ \boxed{ \boxed{P = 7}}}

We Know,

Quadratic Polynomial having sum of Zeros S and Product of Zeros P have General Form :

x² - Sx + P

Hence Required Polynomial is : \Large\pink{\pmb{{x}^{2} -7x + 10}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Similar questions