Physics, asked by mrkhan75, 1 month ago

If alpha and beta are the zeroes of polynomial p(x) = x² - 7x + 10, find the quadratic polynomial with zeroes (-alpha) and (-beta).​

Answers

Answered by ImperialGladiator
20

Answer:

 \rm =  {x}^{2}  + 6x + 10

Explanation:

Given polynomial,

 \rm \implies \: p(x) =  {x}^{2}  - 7x + 10

Whose zeros are α and β

We need to find the polynomial whose zeros are -α and

Let's find α and β first :-

On comparing p(x) with the general form of a quadratic equation i.e., ax² + bx + c = 0

We get,

  • a = 1
  • b = -7
  • c = 10

By quadratic formula :-

 \rm \implies \: x =  \dfrac{ - b \pm \sqrt{ {(b)}^{2} - 4ac }  }{2a}

 \rm \implies \: x =  \dfrac{ - ( - 7) \pm \sqrt{ {( - 7)}^{2} - 4(1)(10) }  }{2(1)}

 \rm \implies \: x =  \dfrac{7\pm \sqrt{ 49 - 40 }  }{2}

 \rm \implies \: x =  \dfrac{7\pm \sqrt{ 9 }  }{2}

 \rm \implies \: x =  \dfrac{7\pm 3  }{2}

 \rm \implies \: x =  \dfrac{7 +  3  }{2}  \: and \:  \dfrac{7 - 3}{2}

 \rm \implies \: x =  \dfrac{10}{2}  \: and \:  \dfrac{4}{2}

 \rm \implies \: x =  5 \: and \: 2

 \rm \therefore \:  \alpha  = 5 \: and \:  \beta  = 2

Now,

New zeros :-

 =   - \alpha

 =  - 5

And also,

 =  -  \beta

 =  - 2

The required polynomial is given by,

 \rm =  {x}^{2}  - (sum \: of \: zeros)x + (product \: of \: zeros)

 \rm =  {x}^{2} - [ ( - 5) + ( - 2)]x + ( - 5)( - 2)

 \rm =  {x}^{2} - [ - 5 - 2]x + 10

 \rm =  {x}^{2} - [ - 6]x + 10

 \rm =   {x}^{2}  + 6x + 10

Similar questions