If alpha and beta are the zeroes of polynomial p(X)=xsquare-p(X+1)c such that (alpha +1) (beta+1)=0. Find c
Answers
Answer:
Step-by-step explanation:Given that alpha and beta are the roots of the quadratic equation f(x) = x^2-p(x+1)-c = x^2-px-p-c = x^2 -px-(p+c),
comparing with ax^2 + bx + c, we have, a =1 , b= -p & c= -(p+c)
alpha+beta = -b/a = -(-p)/1 = p
& alpha*beta = c/a = -(p+c)/1 = -(p+c)
Therefore, (Alpha + 1)*(beta+1)
= Alpha*beta + alpha + beta + 1
= -(p+c) + p + 1
= -p-c+p+1
= 1-c
or c=1
Correct question : If α and β are the zeros of the polynomial x² - p ( x + 1 ) + c such that, ( α + 1 ) ( β + 1 ) = 0 then find the value of c.
Answer:
c = - 1
Step-by-step explanation:
x² - p ( x + 1 ) + c
⇒ x² - p x - p + c
⇒ x² - p x + ( c - p )
Comparing with ax² + bx + c, we get :
a = 1
b = - p
c = c - p .
Given :
( α + 1 )( β + 1 ) = 0
⇒ αβ + α + β + 1 = 0
Note that, sum of roots = - b/a
α + β = - b / a
But b = - p
a = 1
So α + β = - ( - p ) / 1 = p
Product of roots = αβ = c / a
⇒ αβ = ( c - p )
Hence write this as :
αβ + α + β + 1 = 0
⇒ c - p + p + 1 = 0
⇒ c + 1 = 0
⇒ c = -1
Hence, the value of c is - 1