Math, asked by raunakrajdeolaptop, 2 months ago

if alpha and beta are the zeroes of quadratic polynomial ax sqauare + bx + c evaluate alpha by beta + beta by alpha​

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

  \:  \:  \:  \:  \:  \:  \:  \:  \bull \: \sf \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) =  {ax}^{2} + bx + c

\large\underline{\sf{Solution-}}

Given that

 \rm :\longmapsto\:\sf \:  \alpha  \: and \:  \beta  \: are \: zeroes \: of \: f(x) =  {ax}^{2} + bx + c

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:{{\tt Sum\ of\ the\ zeroes \: ( \alpha   + \beta ) \: = \: \dfrac{-b}{a}}}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:{{\tt Product\ of\ the\ zeroes \: ( \alpha  \beta )=\dfrac{c}{a}}}

Now, Consider

\rm :\longmapsto\: { \alpha }^{2}  +  { \beta }^{2}

 \sf \:  =  \:  {( \alpha +   \beta )}^{2}  - 2 \alpha  \beta

 \sf \:  =  \:  {\bigg(\dfrac{ - b}{a}  \bigg) }^{2}  - 2\bigg(\dfrac{c}{a}  \bigg)

 \sf \:  =  \: \dfrac{ {b}^{2} }{ {a}^{2} }  - \dfrac{2c}{a}

 \sf \:  =  \: \dfrac{ {b}^{2} - 2ac }{ {a}^{2} }

Onwards this, please find the attachment

Additional Information :-

 \boxed{ \bf \:  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta }

 \boxed{ \bf \:  { \alpha }^{3}  +  { \beta }^{3}  =  {( \alpha  +  \beta )}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta )}

 \boxed{ \bf \:  \alpha   - \beta  =   \sqrt{ {( \alpha  +  \beta )}^{2} - 4 \alpha  \beta  } }

Attachments:
Similar questions