If alpha and beta are the zeroes of
quadratic polynomial
f (x) = K(x) = Kx² + 4x +4 such that
alpha² + Beta² =24, find the
values of K.
Answers
Answered by
2
Step-by-step explanation:
α,β roots of f(x)=kx
2
+4x+4
Given α
2
+β
2
=24
We know α+β=
a
−b
=
k
−4
αβ=
a
c
=
k
4
(α+β)
2
=α
2
+β
2
+2αβ
(
k
−4
)
2
=24+2(
k
4
)
k
2
4
2
=24+2(
k
4
)
16=24k
2
+8k
2=3k
2
+k
0=3k
2
+k−2
0=3k
2
+3k−2k−2
0=3k(k+1)−2(k+1)
0=(k+1)(3k−2)
∴k=−1,
3
2
Answered by
3
a,β roots of f(x)= kx²+4x+4
Given:-
a²+β²=24
16=24k²+8k
2=3k²+k
0=3k²+k-2
0=3k²+3k-2k-2
0=3k(k+1)-2(k+1)
0=(k+1)(3k-2)
Therefore:-
Similar questions