Math, asked by phaddy6677, 1 year ago

if alpha and beta are the zeroes of quadratic polynomial f(x)=x^2-x-4 find the value of 1/alpha+1/beta-alphabeta

Answers

Answered by Aurora34
4
Given:

f(x) =  {x}^{2}  - x - 4
here,

a= 1, b= -1 and c= -4,

we know that,

sum of zeroes= -b/a

 \alpha  +  \beta  = 1
____________________(1)

also,

Product of zeroes= c/a

 \alpha  \beta  =  - 4
_______________________(2)

now,

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  -  \alpha  \beta  \\  \\  =  \frac{ \beta  +  \alpha }{ \alpha  \beta }  -  \alpha  \beta  \\  \\  =  \frac{ \beta  +  \alpha  -  \alpha  \beta (  \alpha  \beta )}{ \alpha  \beta }
substituting the values of (1) and (2),

 \frac{1  + 4( - 4)}{ - 4 }  \\  \\  =  \frac{1 - 16}{ - 4}  \\  \\  =  \frac{ - 15}{ - 4}  \\  \\  =  \frac{15}{4}
Similar questions