Math, asked by 99179757msgmailcom, 1 year ago

if alpha and beta are the zeroes of rhe quadratic polynomial f(x)=6x^2 +x-2 find the value of alpha/beta +beta /alpha​

Answers

Answered by silentlover45
11

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: f \: {(x)} \: \: \leadsto  \: \: {6x}^{2} \: + \: {x} \: - \: {2}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Value \: \: of \: \: \frac{\alpha}{\beta} \: + \: \frac{\beta}{\alpha}?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: f \: {(x)} \: \: \leadsto  \: \: {6x}^{2} \: + \: {x} \: - \: {2}

\: \: \: \: \: \leadsto {6x}^{2} \: + \: {x} \: - \: {2}

\: \: \: \: \: \leadsto {6x}^{2} \: - \: {3x} \: + \: {4x} \: - \: {2}

\: \: \: \: \: \leadsto {3x} \: {({2x} \: - \: {1})} \: + \: {2} \: {({2x} \: - \: {1})}

\: \: \: \: \: \leadsto {({3x} \: + \: {2})} \: \: \: {({2x} \: - \: {1})}

\: \: \: \: \: \leadsto {x} \: = \: \frac{-2}{3} \: \: \: Or \: \: \: {x} \: = \: \frac{1}{2}

  • \: \: \: \: \: {\alpha} \: = \: \frac{-2}{3} \: \: \: Or \: \: \: {\beta} \: = \: \frac{1}{2}

\: \: \: \: \: \therefore Now, \: \: putting \: \: the \: \: value \: \: of \: \: \alpha \: \: and \: \: \beta.

\: \: \: \: \: \: \: \fbox{\frac{\alpha}{\beta} \: + \: \frac{\beta}{\alpha}}

\: \: \: \: \: \: \: \large\leadsto  \: \: \frac{\frac{-2}{3}}{\frac{1}{2}} \: + \: \frac{\frac{1}{2}}{\frac{-2}{3}}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{-2}{3} \: \times \: \frac{1}{2} \: + \: \frac{1}{2} \: \times \: \frac{3}{-2}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{-4}{3} \: \times \: \frac{3}{-4}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{{16} \: + \: {9}}{-12}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{25}{-12}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{-25}{12}

  • \: \: \: \: \: Hence, \: \: the \: \: the \: \: value \: + \: \frac{\alpha}{\beta} \:  + \: \frac{\beta}{\alpha} \: \: is \: \: \frac{-25}{12}

__________________________________

Similar questions