Math, asked by shivanginipooja9, 4 months ago

if alpha and beta are the zeroes of the polynomial 2x^2-4x+5,find the values of 1/alpha^2+1/beta^2

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  :-  }}

 \rm :  \implies \: \alpha  \: and \:  \beta  \: are \: zeroes \: of \: polynomial \:  {2x}^{2}  - 4x + 5

\large\underline\blue{\bold{To \: Find -  }}

\rightarrow \rm \: the \: value \: of \: \dfrac{1}{ { \alpha }^{2} }  + \dfrac{1}{ { \beta }^{2} }

\large\underline\purple{\bold{Solution :-  }}

Now,

We know that,

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

OR

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

And

\boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

OR

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

So,

\rightarrow \rm \:  \alpha + \beta = \frac{-b}{a}

\rightarrow \rm \:  \alpha + \beta = \frac{-( - 4)}{2}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \: \alpha  +  \beta  \:  =  \: 2}}

And

\rightarrow  \rm \: \alpha \beta = \frac{c}{a}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \: \alpha  \beta  \:  =  \: \dfrac{5 }{2} }}

Now, Consider

\rightarrow \rm \: \dfrac{1}{ { \alpha }^{2} }  + \dfrac{1 }{ { \beta }^{2} }

 \rm :  \implies \:\dfrac{ { \beta }^{2}  +  { \alpha }^{2} }{ { \alpha }^{2} { \beta }^{2}  }

 \rm :  \implies \:\dfrac{ { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  - 2 \alpha  \beta }{ {( \alpha  \beta )}^{2} }

 \rm :  \implies \:\dfrac{ {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }{ {( \alpha  \beta )}^{2} }

On substituting the values, we get

 \rm :  \implies \:\dfrac{ {(2)}^{2}  - 2 \times \dfrac{5}{2} }{ {(\dfrac{5}{2} )}^{2} }

 \rm :  \implies \:(4 -5 ) \times \dfrac{4}{25}

 \rm :  \implies \: -  \:  \dfrac{4}{25}

 \bigstar \:  \:  \boxed{ \pink{  \rm :  \implies \:\dfrac{1}{ { \alpha }^{2} } \:  +  \:  \dfrac{1}{ { \beta }^{2} } \:   =  \:  - \:  \dfrac{4}{25} \:  }}

Similar questions