Math, asked by dhananjaypandey641, 6 months ago

If alpha and beta are the zeroes of the polynomial 2x^2-5x +7 find the quadratic polynomial whose zeroes are 2alpha+3 beta and 3 alpha +2 beta

Answers

Answered by safqatzahera
0

When roots are given, equation in quadratic form

x

2

−(α+β)x+αβ=0

Here roots are (2α+3β) and (3α+2β)

∴x

2

−(2α+3β+3α+2β)x+(2α+3β)(3α+2β)=0

x

2

−5(α+β)x+6α

2

+4αβ+4αβ+6β

2

=0

f(x)=2x

2

−5x+7

α+β=

2

5

, αβ=

2

7

∴α

2

2

=(α+β)

2

−2αβ

=

4

25

−7=

4

−3

x

2

−5(

2

5

)x+6(−

4

3

)+13×

2

7

=0

∴2x

2

−50x−18+182=0

2x

2

−50x+164=0

∴x

2

−25x+82=0.

Answered by Bidikha
3

Given -

 \alpha  \: and \:  \beta  \: are \: the \: zeroes  \\ \: of \: the \: polynomial \:  {x}^{2} - 5x + 7

To find -

the \: quadratic \: polynomial \: whose \:  \\ zeroes \: are \: 2 \alpha  + 3 \beta and \: 3 \alpha  + 2 \beta

Solution -

p(x) =  2{x}^{2}  - 5x + 7

 \alpha  \: and \:  \beta  \: are \: zeroes \: of \: given \: quadratic \: polynomial

 \alpha  +  \beta  =  \frac{ - b}{a}

 \alpha  +  \beta  =  -  \frac{( - 5)}{2}  =  \frac{5}{2} .....1)

 \alpha  \times  \beta  =  \frac{c}{a}

 \alpha \beta  =  \frac{7}{2} ....2)

zeroes \: of \: polynomial \: are \\ (2 \alpha  + 3 \beta ) \: and \: (3 \alpha  + 2 \beta )

then \:  \alpha  +  \beta  = (2 \alpha  + 3 \beta ) + (3 \alpha  + 2 \beta )

 \alpha  +  \beta  = 5 \alpha  + 5 \beta  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 5( \alpha  +  \beta )

From 1) we will get-

5( \alpha  +  \beta ) = 5 \times  \frac{5}{2}  =  \frac{25}{2}

Now,

 \alpha  \beta  = (2 \alpha  + 3 \beta )(3 \alpha  + 2 \beta ) \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \alpha  \beta  = 6 { \alpha }^{2}  + 4 \alpha  \beta  + 9 \alpha  \beta  +  {6 \beta }^{2}  \\  \alpha  \beta  = 6( { \alpha }^{2}  +  { \beta }^{2} ) + 13 \alpha  \beta

We know that,

(a²+b²) =(a+b) ²-2ab

 \alpha  \beta  = 6[ {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta]  + 13 \alpha  \beta

 \alpha  \beta  =6[ ( { \frac{5}{2} )}^{2}  - 2 \times  \frac{7}{2}]  + 13 \times  \frac{7}{2} (by \: 1 \: and \: 2)

 \alpha  \beta  = 6( \frac{25}{4}  - 7) +  \frac{91}{2}

 \alpha  \beta  = 6 \times  \frac{ - 3}{4}  +  \frac{91}{2}

 \alpha  \beta  =  \frac{ - 9}{2}  +  \frac{91}{2}

 \alpha  \beta  =  \frac{ - 9 + 91}{2}

 \alpha  \beta  =  \frac{82}{2}

 \alpha  \beta  = 41

\therefore \: the \: polynomial \: obtained \: is \:

g(x) =  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta

g(x) =  {x}^{2}  -  \frac{25}{2} x + 41

Similar questions