Math, asked by Prerna58971, 5 months ago

if alpha and beta are the zeroes of the polynomial 2x^2 -5x+7,then find a quadratic polynomial whose zeroes are 3alpha +4beta and 4alpha+3beta​.​

Answers

Answered by MaIeficent
46

Step-by-step explanation:

Given:-

  • A quadratic polynomial 2x² - 5x + 7

  • The zeroes of the polynomial are α and β.

To Find:-

  • The quadratic equation whose zeroes are 3α + 4β and 4α + 3β.

Concept used:-

For a quadratic polynomial ax² + bx + c

\sf Sum\: of \: zeroes = \sf \dfrac{-b}{a}

\sf Product\: of \: zeroes = \sf \dfrac{c}{a}

Solution:-

Comparing 2x² - 5x + 7 with ax² + bx + c

Here:-

a = 2  \:\:\:\:  , b = - 5 \:\:\:\:  , c = 7

\implies \sf Sum \: of \: roots = \dfrac{-(-5)}{2} = \dfrac{5}{2}

\implies \bf \alpha + \beta = \dfrac{5}{2}

\sf Product \: of \: zeroes = \dfrac{7}{2}

\implies \bf \alpha \beta = \dfrac{7}{2}

Now, we need to find the quadratic equation whose zeroes are 3α + 4β and 4α + 3β.

\sf Sum \: of \: zeroes = (3\alpha + 4\beta) + (4\alpha + 3\beta

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 7\alpha + 7\beta = 7(\alpha + \beta)

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 7 \times \dfrac{5}{2}

\sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \dfrac{35}{2}

\sf Product \: of \: zeroes = (3\alpha + 4\beta) (4\alpha + 5\beta)

\sf = 12\alpha^2 + 9\alpha \beta + 16\alpha \beta + 12\beta^2

\sf = 12\alpha^2 +  12\beta^2+ 25\alpha \beta

\sf = 12(\alpha^2 + \beta^2)+ 25\alpha \beta

\sf = 12(\alpha + \beta) ^{2} - 2 \alpha  \beta  + 25\alpha \beta

\sf = 12(\alpha + \beta) ^{2}    + 23\alpha \beta

\sf = 12 \bigg( \dfrac{5}{2}  \bigg) ^{2}    + 23 \times \dfrac{7}{2}

\sf = \dfrac{150}{2}     +  \dfrac{161}{2}

\sf = \dfrac{311}{2}

\sf Product\: of \: the \: roots = \dfrac{311}{2}

General form of a quadratic equation is:-

\sf x^2 - (sum \: of \: zeroes)x + product \: of \: zeroes = 0

\sf \implies x^2 - \dfrac{35}{2}x + \dfrac{311}{2} = 0

\sf \implies 2x^2 - 35x + 311 = 0

Hence, Required quadratic polynomial is:-

\large\dashrightarrow \underline{\boxed{\bf 2x^2 - 35x + 311}}


BrainlyHero420: Amazing!
IIDarvinceII: Nice answr ;)
THEBIGBRAINGUY: i am aurora from the mallificent
Answered by ILLUSTRIOUS27
12

Given-

  • if \alpha and \beta are the zeroes of the polynomial 2x^2 -5x+7

To Find-

  • Quadratic polynomial whose zeroes are 3\alpha +4\beta and 4\alpha+3\beta.

Concept used

  •  \rm \:  \alpha  +  \beta  =  \dfrac{ - b}{a}
  •  \rm \alpha  \beta  =  \dfrac{c}{a}

 \bf \: k \{ {x}^{2} - (s) x + p \}

Solution-

For Given Quadratic equation

 \bf \:  2{x}^{2}  - 5x + 7 = 0

Here,

  • a=2

  • b=-5

  • c=7

We know,

 \rm \alpha  +  \beta =  \dfrac{ - b}{a}   \\  \\  \implies  \boxed{ \mathbf{  \alpha  +  \beta =  \frac{5}{2}  }}

We also know,

 \rm \:  \alpha  \beta  =  \dfrac{c}{a}  \\  \\  \implies \boxed{ \bf \alpha  \beta  =  \frac{7}{2} }

Required equation

 \bf k \{ {x}^{2}  - (s)x + p \} \\  \\

Here

 \rm \: sum = 3 \alpha  + 4 \beta  + 4 \alpha  + 3 \beta  \\  \\  \implies  \rm sum =  7 \alpha  + 7 \beta  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \rm \: sum = 7( \frac{5}{2} )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies  \boxed{ \mathbf{ \: sum =  \frac{35}{2} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\rm \: product \: =  (3 \alpha  + 4  \beta  )(4 \alpha  + 3 \beta ) \\  \\  \rm \implies product = 12  { \alpha }^{2}  + 9 \alpha  \beta  + 16  \alpha  \beta  + 12 { \beta }^{2}   \\  \\  \implies \rm product = 12( { \alpha }^{2} +  { \beta }^{2}  ) + 25 \beta  \alpha \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies \rm \: product \ =  12( \alpha  +  \beta )^2 - 2 \alpha  \beta  + 25 \alpha  \beta  \\  \\  \rm \implies \: product = 12( \frac{5}{2} )^2 + 23   \times  \frac{7}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \rm \implies product =  \frac{300}{4}  +  \frac{161}{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies  \boxed{\bf product  =  \frac{311}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Putting values

 \bf k \{ {x}^{2}  - ( \frac{35}{2} x)  + ( \frac{311}{2} ) \}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \bf k\{ \frac{2 {x}^{2}  -  35x  + 311}{2}  \} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \underline { \boxed{ \huge \bf \: 2 {x}^{2}  - 35x + 311}} \\ \bf is \: the \: required \: equation \: where \: k = 2


IIDarvinceII: Gud biro ;)
ILLUSTRIOUS27: thank you
IIDarvinceII: wello ;)
rakshit9847: phle s aata tha isse ans koi chinta na kro
rakshit9847: tushar meri id m aa y tele p aa
Similar questions