Math, asked by yogeshkumar8144, 10 months ago

If alpha and beta are the zeroes of the polynomial 2x^2+7x+5, then value of alpha+beta+alpha*beta

Answers

Answered by njitdhillon10
0

Step-by-step explanation:

give th root of equation

2x

2

−7x+5=0 are \alpha ,\betaα,β

Compare it with:

ax^2+bx+c=0ax

2

+bx+c=0

So:

a=2

,b=-7

and c=5

We know that:

\alpha+\beta=-b/aα+β=−b/a

=7/2...............(1)

\alpha*\beta=c/aα∗β=c/a

=5/2.............(2)

Given

\frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}

β

α

2

+

α

β

2

\implies \frac{\alpha^3+\beta^3}{\alpha*\beta}⟹

α∗β

α

3

3

\implies \frac{(\alpha+\beta)(\alpha^2-\alpha*\beta+\beta^2)}{\alpha*\beta}⟹

α∗β

(α+β)(α

2

−α∗β+β

2

)

\implies \frac{(\alpha+\beta)([\alpha+\beta]^2-3\alpha*\beta)}{\alpha*\beta}⟹

α∗β

(α+β)([α+β]

2

−3α∗β)

From 1 and 2

\implies \frac{(7/2)(49/4-3*5/2)}{5/2}⟹

5/2

(7/2)(49/4−3∗5/2)

\implies \frac{(7/2)(19/4)}{5/2}⟹

5/2

(7/2)(19/4)

\implies \frac{133/8}{5/2}⟹

5/2

133/8

\implies 133/8*2/5⟹133/8∗2/5

\implies 133/20⟹133/20

The answer is 133/20

Answered by chnageswarr
1

Answer:

IF YOU LIKE IT, PLEASE FOLLOW ME.

Attachments:
Similar questions