Math, asked by vivekstark, 1 year ago

If alpha and beta are the zeroes of the polynomial 2x^2+7x+5 then find the value of alpha+beta+alpha×beta

Answers

Answered by brahatesh
6
Compare the given quadratic equation with its standard form ax^2 + bx + c = 0
a = 2, b = 7 and c = 5
Alpha + beta = -b/a
= -7/2

Alpha x beta = c/a
= 5/2

Alpha + beta + alpha x beta
= (-7/2) + 5/2
= (-7+5)/2
= -2/2
= -1
Answered by Anonymous
6

Answer:-

\boxed{ \alpha  +  \beta  +  \alpha  \beta  =  - 1} \:

Explanation :-

Formula used :-

  \small \: \star \: sum \: of \: zeros =  \frac{ - coeff. \: of \: x}{coeff. \: of \:  {x}^{2} }  \\  \\  \star \:  \small \: product \: of \: zeros \:  =  \frac{constant}{coeff. \: of \:  {x}^{2} }  \\  \\  \boxed{ here \: coeff. = coefficient}

Solution :-

According to the question,

 \alpha  \: and \:  \beta  \:  \: are \: the \: zeros \: of \:  \\ 2 {x}^{2}  + 7x + 5 \:  = 0 \\  \\  \therefore \\  \\  \implies \:  \small \alpha  +  \beta  =  \frac{ - 7}{2}  (sum \: of \: zeros)\\  \\  \small \implies \:  \alpha  \beta  =  \frac{5}{2} (product \: of \: zeros)

We find ,

 \implies \:  \alpha  +  \beta  +  \alpha  \beta  \\  \\

Substitute the values,

 \implies \:  \frac{ - 7}{2}  +  \frac{5}{2}  \\  \\  \implies \:  \frac{ - 7 + 5}{2}  \\  \\  \implies \:  \frac{ - 2}{2}  \\  \\  \implies \:  - 1 \\  \\ therefore \\  \\  \implies \:   \red{\boxed{ \alpha  +  \beta  +  \alpha  \beta  =  - 1}}

Similar questions