Math, asked by anadia, 9 months ago

If alpha and beta are the zeroes of the polynomial 2y ^2 + 7y + 5, then write the [2]
value of alpha + beta + alpha beta

Answers

Answered by singgsoull
0

Here's your solution.

Attachments:
Answered by Rose08
5

Question :-

If alpha and beta are the zeroes of the polynomial 2y² + 7y + 5, then write the [2] value of α + β + αβ

Answer :-

The value is α + β + αβ is -1

Solution :-

Let's factorize the quadratic polynomial 2y² + 7y + 5 first,

\sf\longrightarrow 2 {y}^{2} + 7y + 5

\sf\longrightarrow 2 {y}^{2} + (5 + 2)y + 5

\sf\longrightarrow 2 {y}^{2} + 5y + 2y + 5

\sf\longrightarrow y (2y + 5) + 1 (2y + 5)

\sf\longrightarrow (y + 1) (2y + 5)

\sf\therefore Either, \: (y + 1) = 0 \: or, \: (2y + 5) = 0

\sf\rightarrow y + 1 = 0

\sf\rightarrow y = -1

Or,

\sf\rightarrow 2y + 5 = 0

\sf\rightarrow 2y = -5

\sf\rightarrow y = \dfrac{-5}{2}

Hence, the zero of the polynomials are - 1 and -5/2

Now, Let α be -1 and β be -5/2

Putting the values,

\sf\longrightarrow \alpha  +  \beta  +  \alpha  \beta

\sf\longrightarrow - 1 + \dfrac{-5}{2} + (-1) \times \dfrac{-5}{2}

\sf\longrightarrow - 1 - \dfrac{5}{2} + \dfrac{5}{2}

\sf\huge\therefore - 1

Similar questions