Math, asked by kashmir5112, 8 months ago

If alpha and beta are the zeroes of the polynomial 3x^2+2x+3 then, find 1/(alpha)^2+1/(beta)^2

Answers

Answered by kkrishna9312
0

Answer:

643+4567-77+1173

672+177272

Answered by amansharma264
0

 \large \green{ \underline{answer \:  \:  =  \:  \frac{ - 14}{9} }} \\  \\ \large \implies{ \underline{solution}} \\  \\ \large \implies{3 {x}^{2} + 2x + 3 = 0 } \\  \\ \large \implies{sum \:  \: of \:  \: roots \:  =  \frac{ - b}{a}  =  \frac{ - 2}{3} } \\  \\ \large \implies{product \:  \: of \: roots \:  =  \frac{c}{a}  = 1} \\  \\ \large \implies \orange{ \underline{to \:  \: find \:  }} \\  \\ \large \implies{ \frac{1}{ { \alpha }^{2}  }  +  \frac{1}{ \beta  {}^{2} } } \\  \\ \large \implies{ \frac{ { \beta }^{2}  +  { \alpha }^{2} }{ { \alpha }^{2}  { \beta }^{2} } } \\  \\ \large \implies{ \frac{(  \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta }{( \alpha  \beta ) {}^{2} }  } \\  \\ \large \implies{  \frac{ (\frac{ - 2}{3} ) {}^{2}  - 2(1)}{1}  } \\  \\ \large \implies{ \frac{ \frac{4}{9}  - 2}{1} } \\  \\ \large \implies{  \boxed{\frac{ - 14}{9} }}

Similar questions