Math, asked by sniperswipesjingles, 7 months ago

if alpha and beta are the zeroes of the polynomial 3x^2 + 5x = 2 then find, the value of 1/alpha +1/beta​

Answers

Answered by Asterinn
7

Given :

 \alpha \: and  \: \beta \: are \:  the \:  zeroes  \\  \: of  \: the \:  polynomial \: 3 {x}^{2}  + 5x = 2

To find :

 \dfrac{1}{\alpha}   +    \dfrac{1}{\beta}

Solution :

 \implies\dfrac{1}{\alpha}   +    \dfrac{1}{\beta}

LCM \:  = {\alpha}   {\beta}

\implies\dfrac{\beta + \alpha}{\alpha\beta}

\implies\dfrac{\beta + \alpha}{\alpha\beta}    =  \dfrac{sum \: of \: roots}{product \: of \: root}

 \implies \: 3 {x}^{2}  + 5x = 2

\implies \: 3 {x}^{2}  + 5x  - 2 = 0

sum \: of \: roots =  -  \:  \dfrac{coefficient \: of \: x}{coefficient \: of \: {x}^{2} }

 \implies \: sum \: of \: roots =  -  \:  \dfrac{5}{3}  = {\beta + \alpha}

product\: of \: roots =  -  \:  \dfrac{constant \: term}{coefficient \: of \: {x}^{2} }

 \implies \: product \: of \: roots =    \:  \dfrac{ - 2}{3 } = {\alpha\beta}

Now :-

\implies\dfrac{1}{\alpha}   +    \dfrac{1}{\beta}  = \dfrac{\beta + \alpha}{\alpha\beta}

\implies\dfrac{1}{\alpha}   +    \dfrac{1}{\beta}  = \dfrac{ -  \:  \dfrac{5}{3}  }{ \dfrac{ - 2}{3 } }

\implies\dfrac{1}{\alpha}   +    \dfrac{1}{\beta}  =  (\dfrac{ - 5}{3})  \times ( \dfrac{ - 3}{2}  )

\implies\dfrac{1}{\alpha}   +    \dfrac{1}{\beta}  =  \dfrac{ 5}{2}

Answer :

\dfrac{1}{\alpha}   +    \dfrac{1}{\beta}  =  \dfrac{ 5}{2}

Similar questions