if alpha and beta are the zeroes of the polynomial 3x2 +8x +2 find the value of (i) alpha 2 + beta 2 (ii) alpha2 - beta 2
Answers
Answered by
7
Answer:
please Mark as brilliant answer
Attachments:
Answered by
46
- p(x) = 3x² + 8x + 2
- Value of α² + β²
- α² - β²
- p(x) = 3x² + 8x + 2
➝ α + β = -b/a
➝ α + β = -8/3
➝ αβ = c/a
➝ αβ = 2/3
we know that
- (a+b)² = a² + b² +2ab
➝(α + β)² = α² + β² + 2αβ
➝ (α + β)² - 2αβ = α² + β²
Value of α² + β² :-
➝ α² + β² = (-8/3)² -2×2/3
➝ α² + β² = 64/9 -4/3
➝ α² + β² = (64 -12)/9
➝ α² + β² = 52/9
we know that :-
- a² - b² = (a+b)(a-b)
➝ α² - β² = (α+β)(α-β)
and
➝ (a-b)² = a² + b² -2ab
➝ (a-b) = √a² + b² -2ab
Value of α² - β²
➝ α² - β² = (a+b)(√a² + b² -2ab)
➝ α² - β² = -8/3(√(52/9-2×2/3)
➝ α² - β² = -8/3(√(52-12)/9
➝ α² - β² = -8/3 (√40/9)
➝ α² - β² = -8/3 ×2√10/3
➝α² - β² = -16√10/9
So,
Value of α² + β² = 52/9 and α² - β² = -16√10/9.
Similar questions