Math, asked by vikastiwari51, 6 months ago

if alpha and beta are the zeroes of the polynomial 4x^2+3x+7=0 then the value of 1/alpha +1/beta

Answers

Answered by amansharma264
7

EXPLANATION.

 \sf :  \implies \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: the \: polynomial \:  \implies \: 4 {x}^{2}  + 3x + 7 = 0

\sf :  \implies \: sum \: of \: zeroes \: of \: quadratic \: polynomial \\ \sf :  \implies \:  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ \sf :  \implies \:  \alpha  +  \beta  =  \frac{ - 3}{4} \:  \:  \: ......(1)

\sf :  \implies \: product \: of \: zeroes \: of \: quadratic \: equation \\ \sf :  \implies \:  \alpha  \beta  =  \frac{c}{a}  \\  \\ \sf :  \implies \:  \alpha  \beta  =  \frac{7}{4}  \:  \: .....(2)

To find the value of 1/a + 1/b.

\sf :  \implies \:  \dfrac{1}{ \alpha } +  \dfrac{1}{ \beta } \\  \\   \sf :  \implies \:  \frac{ \beta  +  \alpha }{ \alpha  \beta }  \\  \\ \sf :  \implies \:  \frac{  \dfrac{ - 3}{4} }{ \dfrac{7}{4} }  \implies \:  \frac{ - 3}{4}  \times  \frac{4}{7}  =  \frac{ - 3}{7}

Therefore,

value of 1/a + 1/b = -3/7.

Similar questions