Math, asked by mandeepmultani4537, 1 year ago

If alpha and beta are the zeroes of the polynomial 6y(squared)+7y+2 , find quadratic polynomial , whose zeroes are 1/ alpha and 1/ beta ?

Answers

Answered by Absolutely9shine
4
hope this helps you
Attachments:

Anonymous: punjabi oo?
Absolutely9shine: yep
Anonymous: ooo gr8
Anonymous: from where ?
Anonymous: ???
Anonymous: excuse me ?? r u there
Answered by Anonymous
1

\underline{\bf \: Solution:-}}}

\rm \: The \: given \: polynomial \: is \: \\\rm \: \: \: \:  6y^{2} -7y+2

\rm \: Comparing \: it \: with \: ay^{2} +by+c, \: we \: get

\rm \: a=6, \: b=-7, \: c=2

\therefore \: \rm \: Sum \: of \: zeroes=\alpha +\beta = - \frac{b}{a}=\frac{7}{6}

\rm \: \implies \: \alpha +\beta =\frac{7}{6} \: \: \: \: \: \: \: \: \: \: ...(1)

\rm \: and, \: product \: of \: zeroes = \alpha \beta =\frac{c}{a} =\frac{2}{6}=\frac{1}{3}

\implies \: \rm \: \alpha \beta =\frac{1}{3} \: \: \: \: \: \: \: \: \: \: ...(2)

\bf \: For \: a \: quadratic \: polynomial \: whose\\\bf \: zeroes \: are \: \frac{1}{\alpha} \: and \frac{1}{\beta}

\rm \: S=Sum \: of \: zeroes

\rm \: = \frac{1}{\alpha}+ \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta  }= \frac{7/6}{1/3} \: \: \: \: \: \: \: \: \: \:[ From \: (1) \: and \: (2)]

\rm = \frac{7}{6} \times \: \frac{3}{1}=\frac{7}{2}

\rm \: P=Product \: of \: zeroes

\rm \: =\frac{1}{\alpha} \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{\bigg( \frac{1}{3} \bigg)} \: \: \: \: \: \: \: \: \: \: [From \: (2)]

\rm \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \: 3

\therefore \: \rm \: The \: required \: quadratic \: polynomial \: is

\rm \: k (x^{2} -Sx+P) \: where \: k\neq \: 0 \: is \: real

\rm \: or, \: k \: \bigg(x^{2} - \frac{7}{2}x+3 \bigg)=\frac{k}{2}(2x^{2} -7x+6)

\rm \: Taking \: k=2, one \: such \: quadratic \: polynomial\\\rm \: is \:  \frac{2}{2}(2x^{2} -7x+6)=2x^{2} -7x+6.\\

Similar questions