Math, asked by francydshs372, 1 year ago

if alpha and beta are the zeroes of the polynomial ax^2+bx+c=0 then evaluate alpha square - beta square

Answers

Answered by skh2
5

The polynomial is :-

ax²+bx+c=0

From the relation between zeroes and coefficients if polynomial we know that :-

Sum of zeroes of a polynomial = (-b)/a

Product of zeroes of a polynomial= c/a

Now,

We have the following :-

 { \alpha }^{2} -  { \beta }^{2} \\  \\  \\ =( \alpha + \beta)( \alpha  - \beta) \\  \\  \\ \\ =( \alpha + \beta)( \sqrt{ {( \alpha + \beta )}^{2} - 4 \alpha  \beta }

Putting values:-

 \frac{ - b}{a}( \sqrt{( { \frac{ - b}{a})}^{2} -  \frac{4c}{a} } \\  \\  \\  =  \frac{ - b}{a} \sqrt{ \frac{ {b}^{2} }{ {a}^{2} } -  \frac{4ac}{{a}^{2}}} \\  \\  \\ =  \frac{ - b}{ {a}^{2} } \sqrt{ {b}^{2} - 4ac}

Answer!

Similar questions