Math, asked by dishajain400, 2 months ago

If alpha and beta are the zeroes of the polynomial f(x) = 2x2 + 5x + k satisfying the relation alpha square+ Beta square + alpha beta =21/4 then find the value of k for this to be possible.​

Attachments:

Answers

Answered by Anonymous
23

Answer

  • The value of k = 2.

Given

  • α and β are the zeros of the quadratic polynomial 2x² + 5x + k satisfying the relation  { \alpha }^{2}  + { \beta }^{2}  +  \alpha  \beta  =  \cfrac{21}{4}

To Find

  • The value of k.

Step By Step Explanation

Given that α and β are the zeros of the polynomial 2x² + 5k + k satisfying the relation  { \alpha }^{2}  + { \beta }^{2}  +  \alpha  \beta  =  \cfrac{21}{4}. We need to find the value of k.

So let's do it !!

Formula Used

  \dag\underline {\boxed{\purple{\alpha +  \beta  =  \cfrac{ - b}{a}}}} \\  \\ \dag\underline{ \boxed{\pink{\alpha  \beta  =  \cfrac{c}{a}}}}

Identity Used

 \red{{( \alpha  +  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta}

Solution

\longmapsto\tt { \alpha }^{2}  +   { \beta }^{2}  +  \alpha  \beta  =  \cfrac{21}{4}  \\  \\\longmapsto\tt  {( \alpha  +  \beta )}^{2}  -  \alpha  \beta  =  \cfrac{21}{4}  \\  \\  \longmapsto\tt {\bigg(\cfrac{ - 5}{2} \bigg)}^{2} -  \cfrac{k}{2}  =  \cfrac{21}{4}  \\  \\\longmapsto\tt  \cfrac{25}{4}  -  \cfrac{k}{2}  =  \cfrac{21}{4}  \\  \\ \longmapsto\tt \cfrac{25}{4}  -  \cfrac{21}{4}  =  \cfrac{k}{2}  \\  \\ \longmapsto\tt \cfrac{4}{4}  =  \cfrac{k}{2}  \\  \\  \cfrac{4 \times 2}{4}  = k \\  \\ \longmapsto\tt  \cancel\cfrac{8}{4} = k \\  \\ \longmapsto\bf{\green{ 2 = k}}

Therefore, the value of k = 2.

_____________________

Similar questions