English, asked by jumbowidget9170, 1 year ago

If alpha and beta are the zeroes of the polynomial f (x) =3x2+5x+7 then find the value of 1/alpha2+1/beta

Answers

Answered by Anonymous
36

\huge{\underline{\bf{\blue{Question:-}}}}

If alpha and beta are the zeroes of the polynomial f (x) =3x2+5x+7 then find the value of 1/alpha2+1/beta

━━━━━━━━━━━━━━━━━━━━━━━

\large{\underline{\bf{\pink{Answer:-}}}}

The value of 1/α + 1/β = -5/7

\large{\underline{\bf{\purple{Explanation:-}}}}

\large{\underline{\bf{\green{Given:-}}}}

⠀⠀⠀⠀⠀⠀⠀f(x) = 3x² + 5x + 7

\large{\underline{\bf{\green{To\:Find:-}}}}

we need to find the Value of 1/α + 1/β.

\huge{\underline{\bf{\red{Solution:-}}}}

If α and β are zeroes of polynomial 3x² + 5x + 7.

We know that,

If α and β are the zeroes quadratic polynomial of ax² + bx + c .

Then,

 \boxed{\bf{sum \: of \: zeroes \alpha  +  \beta  = \frac{ - b}{a}  }} \\  \\   \boxed{\bf{product \: of \: zeroes  \alpha  \beta =  \frac{c}{a}} }

⠀⠀⠀⠀⠀α + β = -5/3

✰ ⠀⠀⠀⠀⠀α β = 7/3

Now,

 \bf :\implies \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \\  \\  \bf \: :\implies \frac{ \beta  \alpha }{ \alpha  \beta }  \\  \\

 :  \implies\bf \:  \frac{ \frac{ \frac{ - 5}{3} }{7} }{3}  \\  \\ :  \implies\bf \: \frac{ - 5}{3}  \times  \frac{3}{7}  \\  \\:  \implies\bf \: \frac{ - 5}{7}

━━━━━━━━━━━━━━━━

Answered by ItsTogepi
14

Given:

f(x)=3x²+ 5x + 7

To Find:

\sf{ \frac{1}{ \alpha }  +  \frac{1 }{ \beta }}

\rule{300}{2}

Solution:

\sf{ \alpha  \: and \:  \beta } are the zeros of the polynomial 3x² +5x + 7.

Therefore, \sf{ \alpha  \: and \:  \beta} are the zeros of the quadratic polynomial ax² + bx + c

\rule{300}{2}

Sum of the zeros:

 \sf{\implies \alpha  +  \beta  =  \frac{ - b}{a}}

\sf{\implies \alpha  +  \beta  =   \frac{ - 5}{3}}

Product of the zeros:

\sf{\implies \alpha  \beta  =  \frac{c}{a}}

\sf{\implies \alpha  \beta  =  \frac{7}{3}}

\rule{300}{2}

Now,

\sf{\implies \frac{1}{ \alpha }  +  \frac{1 }{ \beta }}

\sf{\implies \frac{ \beta  +  \alpha }{ \alpha  \beta } }

 \sf{\implies \frac{ \frac{ -5 }{3} }{ \frac{7}{3} } }

\sf{\implies \frac{ - 5}{3}  \times  \frac{3}{7} }

\sf{\implies \frac{ - 5}{7} }

\rule{300}{2}

\huge\underline\mathfrak\red{ThankYou}

Similar questions