Math, asked by Anonymous, 10 months ago

if alpha and beta are the zeroes of the polynomial f(X)=x2-8x+lambda, such that alpha-beta=2, find lambda​

Answers

Answered by BrainlyPopularman
34

GIVEN :

A quadratic equation f(x) = x² - 8x + λ have two roots α and β .

α - β = 2 .

TO FIND :

• Value of λ = ?

SOLUTION :

• If a quadratic equation ax² + bx + c = 0 have two roots α and β , then α - β is –

  \\ \:\: \dashrightarrow \:\: { \boxed { \bold{ \alpha  -  \beta  =  \dfrac{ \pm \sqrt{d} }{ a} }}} \\

• Here –

  \\ \:\: \blacktriangleright \:\:{ \bold{a = 1 }} \\

  \\ \:\: \blacktriangleright \:\:{ \bold{b =  - 8}} \\

  \\ \:\: \blacktriangleright \:\:{ \bold{c = \lambda }}  \\

• Now put the values –

  \\ \implies{ \bold{ 2 =  \dfrac{ \pm \sqrt{ {b}^{2} - 4ac } }{ a}}} \\

  \\ \implies{ \bold{ 2 =  \dfrac{ \pm \sqrt{ { (- 8)}^{2} - 4(1)( \lambda)}}{1}}} \\

  \\ \implies{ \bold{ 2 =   \pm \sqrt{{ (- 8)}^{2} - 4 \lambda}}} \\

• Square on both sides –

  \\ \implies{ \bold{4 =  {{ (- 8)}^{2} - 4 \lambda}}} \\

  \\ \implies{ \bold{4 =  64 - 4 \lambda}} \\

  \\ \implies{ \bold{4 \: \lambda=  64 - 4 }} \\

  \\ \implies{ \bold{4 \: \lambda=  60}} \\

  \\ \implies{ \bold{\: \lambda=   \cancel \dfrac{60}{4}}} \\

  \\ \implies \large{ \boxed{ \bold{ \lambda=15}}} \\

Answered by MaIeficent
38

Answer:

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

• are the zeroes of the quadratic equation f(x) = x² - 8x + λ

• α- β = 2

{\blue{\underline{\underline{\bold{To\:Find}}}}}

• The value of λ

{\green{\underline{\underline{\bold{Solution:-}}}}}

\tt\pink{Formula \:used}

\boxed{\alpha -  \beta =  \frac{ \pm \sqrt{ {b}^{2} - 4ac }  }{a}}...........(1)

HEre:-

a = 1 ; b = -8 and c = λ

Substituting the values in equation(1)

\implies 2 = \frac{\pm\sqrt{{(-8)}^{2} - 4(1)(\lambda)}}{1}

\implies 2 = \pm\sqrt{64- 4\lambda}

Squaring on both sides :-

\implies {2}^{2}  = 64 - 4\lambda

\implies 4  = 64 - 4\lambda

\implies 4\lambda = 64-4

\implies 4\lambda = 60

\implies \lambda = \frac{60}{4}

\boxed{\lambda = 15}

Similar questions