Math, asked by adilakshmia86, 6 months ago

if alpha and beta are the zeroes of the polynomial p(x) =x2-7x+12 then find the value of 1/alpha +1/beta​

Answers

Answered by amansharma264
88

EXPLANATION.

α and β are the zeroes of the polynomial,

⇒ p(x) = x² - 7x + 12 = 0.

As we know that,

Sum of the zeroes of the quadratic equation,

⇒ α + β = -b/a.

⇒ α + β = -(-7)/1 = 7. ⇒ (1).

Products of the zeroes of the quadratic equation,

⇒ αβ = c/a.

⇒ αβ = 12/1 = 12.

Value of 1/α + 1/β.

⇒ 1/α + 1/β.

Take L.C.M in equation, we get.

⇒ β + α/αβ.

Put the value in equation, we get.

⇒ 7/12.

                                                                                       

MORE INFORMATION.

Conjugate roots,

If D < 0,

one roots = α + iβ.

other roots = α - iβ.

If D > 0,

one roots = α + √β.

other roots = α - √β.

Answered by MrAnonymous412
79

α and β are zeroes of polynomial ,

- 7x + 12

αβ = 12 the product of the roots is the constant term

α + β = 7 the sum of the roots is the coefficient of x term , negated.

 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \:  \frac{1}{ \alpha} +  \frac{ 1}{ \beta}  + 2 \alpha \beta \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \implies \:  \bigg(  \: \frac{ \alpha \ +  \beta}{ \alpha \beta \:  }  \bigg)+ 2 \alpha \beta

→ 12 / 7 + 2× 12 = 24 + 12 /7 = 180

Similar questions