Math, asked by SRILOY, 4 months ago

if alpha and beta are the zeroes of the polynomial p(x) =x2-7x+12 then find the value of 1/alpha +1/beta​

Answers

Answered by Anonymous
136

Given :

If alpha and beta are the zeroes of the polynomial p(x) =x²-7x+12

To find :

  • \sf \dfrac{1}{\alpha}+\dfrac{1}{\beta}

Solution :

\\ \quad\bullet\:{\sf{\red{Given\: polynomial=x^2-7x+12}}} \\

\\ \qquad\quad\large\mathfrak{\underline{As\:we\:know\:that}}\\\\

  • Quadratic Polynomial : ax² + bx + c, where a 0

\\\\{\large\purple\dagger}\:{\bf{\purple{Sum\:of\:roots=\dfrac{-(coefficient\:of\:x)}{(coefficient\:of\:x^2)}}}}\\\\

\implies\sf \alpha+\beta=\dfrac{(-b)}{a}\\\\

\implies\sf \alpha+\beta=\dfrac{-(-7)}{1}\\\\

\implies\sf \alpha +\beta=7 \\

_______________________

\\{\large\purple\dagger}\:{\bf{\purple{Product\:of\:roots=\dfrac{(constant\:term)}{(coefficient\:of\:x^2)}}}}\\\\

\implies\sf \alpha\times \beta=\dfrac{c}{a}\\\\

\implies\sf \alpha\times \beta=\dfrac{12}{1}\\\\

\implies\sf \alpha \beta=12 \\

_______________________

  • Value of 1/α + 1/β

\\\implies\sf \dfrac{1}{\alpha}+\dfrac{1}{\beta}\\\\

\implies\sf \dfrac{\beta+\alpha}{\alpha \beta}\\\\

\implies\sf \dfrac{\alpha+\beta}{\alpha \beta}\\

  • Substitute the values of α+β & αβ

\\\implies\sf \dfrac{7}{12}\\\\

\therefore{\underline{\boxed{\bf{Value\:of\: \dfrac{1}{\alpha}+\dfrac{1}{\beta}=\dfrac{7}{12}}}}}\\

_________________________


amansharma264: Awesome
Answered by Anonymous
129

{\large{\bold{\rm{\underline{Question}}}}}

★ If alpha and beta are the zeroes of the polynomial p(x) = x²-7x+12 then find the value of 1/alpha + 1/beta

{\large{\bold{\rm{\underline{Given \; that}}}}}

{\sf{:\implies \alpha \: and \: \beta \: are \: zero \: of \: p(x) \: = \: x^{2} - 7x + 12}}

{\large{\bold{\rm{\underline{To \; find}}}}}

{\sf{:\implies The \: value \: of \: \dfrac{1}{\alpha} + \dfrac{1}{\beta}}}

{\large{\bold{\rm{\underline{Solution}}}}}

{\sf{:\implies The \: value \: of \: \dfrac{1}{\alpha} + \dfrac{1}{\beta} \: = 7/12}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

{\large{\bold{\rm{\underline{Using \; concept}}}}}

{\sf{:\implies Sum \: of \: quadratic \: equation \: is \: given \: by \: what?}}

{\sf{:\implies Product \: of \: quadratic \: equation \: is \: given \: by \: what?}}

{\large{\bold{\rm{\underline{Using \; formula}}}}}

{\sf{:\implies Sum \: of \: quadratic \: equation \: is \: given \: by \: \alpha + \beta \: = -b/a}}

{\sf{:\implies Product \: of \: quadratic \: equation \: is \: given \: by \: \alpha \beta \: = c/a}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

~ As we know that sum of quadratic equation is given by α + β = -b/a. Henceforth,

{\sf{:\implies \alpha + \beta = -b/a}}

{\sf{:\implies \alpha + \beta = -(-7)/1}}

{\sf{:\implies \alpha + \beta = 7/1}}

{\sf{:\implies \alpha + \beta = 7}} (1) Eq.

~ Now as e also know that product of quadratic equation is given by αβ = c/a. Henceforth,

{\sf{:\implies \alpha \beta = c/a}}

{\sf{:\implies \alpha \beta = 12/1}}

{\sf{:\implies \alpha \beta = 12}}

~ Now let's find the value of 1/alpha + 1/beta.

{\sf{:\implies \beta + \alpha / \alpha \beta}}

{\sf{:\implies 7/12}}

{\small{\boxed{\boxed{\bf{7/12 \: is \: value \: of \: 1/alpha \: + \: 1/beta}}}}} \red \bigstar

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

{\large{\bold{\rm{\underline{Additional \; knowledge}}}}}

Knowledge about Quadratic equations -

★ Sum of zeros of any quadratic equation is given by ➝ α+β = -b/a

★ Product of zeros of any quadratic equation is given by ➝ αβ = c/a

★ A quadratic equation have 2 roots

★ ax² + bx + c = 0 is the general form of quadratic equation


amansharma264: Great
Similar questions