Math, asked by merbeena123, 10 months ago

If alpha and beta are the zeroes of the polynomial p(x) = x2 + x + 1, then find the sum of their reciporcal​

Answers

Answered by BrainlyPopularman
1

{ \bold{ \green{ \underline{ \underline{ANSWER}} : -  }}}

{ \bold{ \underline{Given \:  \: function}} : -  } \\  \\ { \bold{ \pink{p(x) =  {x}^{2}  + x + 1}}} \\  \\ { \bold{ \underline{To \:  \: find} :  - }} \\  \\ { \bold{ \red{  = \frac{1}{ \alpha } +  \frac{1}{ \beta }  }}} \\  \\ { \bold{ \red{  = \frac{ \alpha  +  \beta }{ \alpha  \beta } }}} \\  \\ { \bold{ \red{  = \frac{ \frac{ - b}{a} }{ \frac{c}{a} } }}} \\  \\ { \bold{ \red{  = -  \frac{b}{c} }}} \\  \\ { \bold{ \red{  = - 1}}} \\  \\  \\  \\ { \bold{  \boxed{{ \huge{\red{FOLLOW \:  \:  ME... }}}}}}

Answered by ishu23265
1

Answer:   -1

Step-by-step explanation:

                                                p(x) = x^2 + x + 1

 zeroes are the values which when we put in place of x  makes p(x)=0.

 Therefore, the values at which x^2 + x + 1 =0 are

 1. ( -1 + i√3 ) / 2  which we call omega(w)

 2. ( -1 - i√3 ) / 2 which we call omega²(w²)

Therefore sum of their reciprocals is   =    1/w  +  1/w²

                                                                =   ( w + w²) / w³

                                                                 =   -1 / 1

                                                                 =   -1 ( ANSWER)

     AS    1.   1 + w + w² = 0

              2.  w³ = 1

hope you will understand it !

please mark it as BRAINLIEST !

Similar questions