If alpha and beta are the zeroes of the Polynomial x^2+ 4x + 3 find the polynomial whose zeroes are 1+beta ÷ alpha and 1 + alpha ÷ beta
Answers
α and β are the zeroes of the polynomial x² + 4x + 3.
So,
Sum of zeroes :
α + β = -b/a
⇒ α + β = -4
Product of zeroes:
αβ = c/a
⇒ αβ = 3
Now,
★Sum of zeroes :
1 + β/α + 1 + α/β
⇒ αβ + β² + αβ + α² / αβ
⇒ α² + β² + 2αβ / αβ
We know that,
α² + β² + 2αβ = ( α + β )²
⇒ ( α + β )² / αβ
Putting the values
⇒ ( - 4 )² / 3
⇒ 16 / 3
★ Product of zeroes:
1 + β/α × 1 + α/β
⇒ 1 + α/β + β/α + αβ/αβ
⇒ 2αβ + α² + β² / αβ
⇒ ( α + β )² / αβ
Putting the values
⇒ ( - 4 )² / 3
⇒ 16 / 3
But required polynomial is:
x² - ( Sum of the zeroes ) x + Product the zeroes
⇒ x² - 16/3 x + 16/3
If k = 3
⇒ 3 ( x² - 16/3 x + 16/3 )
⇒ 3x² - 16x + 16
Solution
Given :-
- equation , x² + 4x + 3 = 0
- α & β are two zeroes of this equation .
Find :-
- polynomial equation ,whose zeroes be 1 + β/α & 1 + α/ β
Explanation
Using Formula
★ Sum of zeroes = -(Coefficient of x)/(Coefficient of x²)
★ Product of zeroes = (Constant part)/(coefficient of x²)
_________________________
So,
➥ Sum Of Zeroes = -(4)/1
➥ β + α = -4 ------------(1)
And,
➥ Product of zeroes = 3
➥ β . α = 3 -----------(2)
Squaring both side of equ(1)
➥ ( β + α)² = (-4)²
➥ β² + α² + 2 β α = 16
Again, keep Value by equ(2)
➥ β² + α² = 16 - 2 * 3
➥ β² + α² = 16 - 6
➥ β² + α² = 10 ----------(3)
Now, Calculate whose equation ,who have be 1 + β/α & 1 + α/ β
➥ Sum of Zeroes = 1 + β/α + 1 + α/ β
➥ Sum of Zeroes = (2βα + β² + α²)/βα
Keep Value by equ(1) & equ(2)
➥ Sum of Zeroes = (2*3 + 10)/3
➥ Sum of Zeroes = (6+10)/3
➥ Sum of Zeroes = 16/3
Now, again,
➥ Product of zeroes = ( 1 + β/α )*( 1 + α/ β)
➥ Product of zeroes = [(β + α)/α] * [ β + α)/β]
➥ Product of zeroes = (β + α)²/αβ
Keep Value by equ(1) & equ(2)
➥ Product of zeroes = (-4)²/3
➥ Product of zeroes = 16/3
________________________
Formula Of Equation
★ x² - x(Sum of zeroes) + (product of zeroes ) = 0
Keep Values,
➥ x² - x(16/3) + 16/3 = 0
➥ 3x² - 16x + 16 = 0
Hence,Required Equation
- 3x² - 16x + 16 = 0