Math, asked by serahmaria717, 1 month ago

If alpha and beta are the zeroes of the polynomial x^2+6x+9, then form a polynomial whose zeroes are -alpha and -beta.

Answers

Answered by BrainlicaLDoll
2

\sf\bold{\underline{Given:}}

polynomial = \sf{{x}^{2}+6x+9}

Zeroes of polynomial = \sf{\alpha\: and\:\beta}

\sf\bold{\underline{To \:find:}}

Polynomial whose zeroes is \sf{-\alpha\: and\: -\beta}

\sf\bold{\underline{Formula\:used:}}

For a given polynomial \sf{{a}^{2}+bx+c} whose zeroes are \sf{\alpha \:and\: \beta},

\sf{\alpha + \beta\:=\:\frac{-b}{a}}

\sf{\alpha \times \beta\:=\:\frac{c}{a}}

\sf\bold{\underline{Solution:}}

\sf\mapsto{For \:first\: polynomial}

\sf{\alpha + \beta\:=\:\frac{-6}{1}\:=\:-6-------(i)}

\sf{\alpha \:=\:-6-\beta-------(ii)}

\sf{\alpha \times \beta\:=\:\frac{9}{1}\:=\:9-------(iii)}

\sf\mapsto{Now\:for\:second\:polynomial}

\sf{(-\alpha )+ (-\beta)\:=\:\frac{-b}{a}}

\sf{-(-6-\beta) - \beta\:=\:\frac{-b}{a}(from\:(ii))}

\sf{6-{\cancel{\beta}}+{\cancel{\beta}}\:=\:\frac{-b}{a}}

\sf\mapsto{\frac{-b}{a}\:=\:6}

\sf and \sf{(-\alpha) \times (-\beta)\:=\:\frac{c}{a}=9}

\sf{\therefore for \:second\:polynomial}

\sf {k[{x}^{2}-((-\alpha) +(-\beta))x + ((-\alpha) \times (-\beta))]}

polynomial \sf\mapsto{k[{x}^{2}-6x+9]\:where,\: K\: is \:a \:constant}

Similar questions