Math, asked by kustanuja17, 3 months ago

If alpha and Beta are the zeroes of the polynomial x^2-p(x+1)-c, then find the value of (alpha +1)(beta+1)= 1-c and also show that, alpha square+2 alpha+1/alpha square+2 alpha x + beta square+2beta+1/beta square + 2 beta +c =1​

Attachments:

Answers

Answered by aadhil207
0

Answer:

and plus B the whole score is equal to square + 2 a b plus b square is equal to

Answered by ItzEnchantedBoy
1

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

\large\green{\mid{\fbox{\tt{Ꭲօ թɾօѵҽ}}\mid}}

\frac{sinθ}{1+cosθ}+\frac{1+cosθ}{sinθ}=2cosecθ

\large\red{\mid{\fbox{\tt{รοℓυƭเօɳ}}\mid}}

\large\pink{\mid{\fbox{\tt{ᏞᎻร}}\mid}}=

⟹\sf\bold{\blue{\frac{sinθ}{1+cosθ}+\frac{1+cosθ}{sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+(1+cosθ)²}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+1+cos²θ+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{sin²+cos²θ+1+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2+2cosθ}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2(1+cosθ)}{(1+cosθ)sinθ}}}

⟹\sf\bold{\blue{\frac{2}{sinθ}}}

⟹\large\pink{\mid{\fbox{\tt{2.coseθ}}\mid}}

\large\pink{\mid{\fbox{\tt{ᏞᎻร=ƦᎻร}}\mid}}

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

_________________________________⠀⠀⠀⠀

⠀⠀⠀ \large\green{\mid{\fbox{\tt{❥ϐℓυєᴇყεร}}\mid}}

_________________________________⠀

Similar questions