Math, asked by archanakurup322, 9 hours ago

if alpha and beta are the zeroes of the polynomial x^2-p(x+1)-q. Find the value of alpha plus one into beta plus one.​

Answers

Answered by mathdude500
34

\large\underline{\sf{Solution-}}

Given that,

\rm \:  \alpha , \beta  \: are \: zeroes \:of \:  {x}^{2} - p(x + 1) - q

can be rewritten as

\rm \:  \alpha , \beta  \: are \: zeroes \:of \:  {x}^{2} - px - p - q

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm\implies \: \alpha  +  \beta  =  - \dfrac{( - p)}{1}  = p

Also,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm\implies \: \alpha  \beta  = \dfrac{ - p - q}{1}  =  - (p + q)

Now, Consider

\rm \: ( \alpha  + 1)( \beta  + 1)

\rm \:  =  \:  \alpha ( \beta  + 1) + 1( \beta  + 1)

\rm \:  =  \:  \alpha  \beta  +  \alpha  +  \beta  + 1

So, on substituting the values, we get

\rm \:  =  \:  - (p + q) + p + 1

\rm \:  =  \:  - p  - q + p + 1

\rm \:  =  \: 1 - q

Hence,

\rm\implies \: \boxed{\tt{  \:\rm \: ( \alpha  + 1)( \beta  + 1) = 1 - q \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}} \\

\boxed{ \bf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma \alpha   = \dfrac{c}{a}}} \\

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}} \\

Answered by FiercePrince
39

Given that , α and β are zeroes of polynomial x²- p( x+ 1 ) -q .

Exigency To Find , The value of ( α + 1 ) ( β + 1 ) .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

  • Polynomial :

\longrightarrow \:\sf \:x^2\:- p( x+ 1 ) -q \:\\\\

\longrightarrow \:\sf \:x^2\:- px -  p -q \:\\\\

\longrightarrow \:\sf \:x^2\:- px -   ( p + q ) \:\\\\

\longrightarrow\purple{ \pmb{\:\sf \:x^2\:- px -  ( p + q ) }}\:\\\\

As We know that ,

\dashrightarrow \sf \pink{\pmb{  \: \alpha \:+ \: \beta \:=\:-\dfrac{ Cofficient \:of\:x\:}{Cofficient \:of\:x^2\:}\:}}\\\\

\dashrightarrow \sf  \: \alpha \:+ \: \beta \:=\:-\dfrac{ Cofficient \:of\:x\:}{Cofficient \:of\:x^2\:}\:\\\\

\dashrightarrow \sf  \: \alpha \:+ \: \beta \:=\:-\dfrac{( - p)\:}{1\:}\:\\\\

\dashrightarrow \purple{ \pmb{\:\sf \: \: \alpha \:+ \: \beta \:=\:p }}\:\\\\

⠀⠀⠀⠀⠀⠀and,

\dashrightarrow \sf \pink{\pmb{  \: \alpha \:\: \beta \:=\:\dfrac{ Constant \:term\:}{Cofficient \:of\:x^2\:}\:}}\\\\

\dashrightarrow \sf  \: \alpha \: \: \beta \:=\:\dfrac{ Constant \:term\:}{Cofficient \:of\:x^2\:}\:\\\\

\dashrightarrow \sf  \: \alpha \: \: \beta \:=\:\dfrac{-(p + q)\:}{1\:}\:\\\\

\dashrightarrow \purple{ \pmb{\:\sf \: \: \alpha \: \: \beta \:=\:-(p+ q )  }}\:\\\\

⠀⠀⠀⠀⠀⠀⌬⠀Finding value of ( α + 1 ) ( β + 1 ) :

\\\longrightarrow \sf \:(\:\alpha + 1 \:)\:\:(\:\beta + 1 \:)\:\\\\

\longrightarrow \sf \:\beta\:(\:\alpha + 1 \:)\:+ 1 \:(\:\alpha + 1 \:)\:\\\\

\longrightarrow \sf \:\alpha\beta + \beta \:+  \:\:\alpha + 1 \:\:\\\\

\longrightarrow \sf\:\alpha\beta + \alpha\:+  \:\:\beta + 1 \:\\\\

\longrightarrow \sf  \:- p - q  + p + 1 \:\\\\

\longrightarrow \sf\:- q  + 1 \:\\\\

\longrightarrow \sf \: 1  - q \:\\\\

\longrightarrow\purple{ \pmb{\:\sf \:   \:(\:\alpha + 1 \:)\:\:(\:\beta + 1 \:)\: \:=\: 1 - q }}\:\\\\

\:\:\:\:\:\therefore \:\sf \underline { \:Hence \: ,\:The\:Value \:of\: \:(\:\alpha + 1 \:)\:\:(\:\beta + 1 \:)\: is\:\pmb{ \:1 - q \:}\:.}\\

Similar questions