Math, asked by ayushmanmohanty76, 9 months ago

if alpha and beta are the zeroes of the polynomial x^+4x+3,find the polynomial whose zeroes are 1+beta/alpha and 1+alpha/bete​

Answers

Answered by Anonymous
5

α and β are the two zeroes of the polynomial x² + 4x + 3.

So,

By using sum of zeroes and product of zeroes

α + β = -4 and αβ = 3

★ Sum of zeroes:

1 +   \frac{ \beta }{ \alpha }  + 1 +  \frac{ \alpha }{ \beta }

 \rightarrow  \frac{ \alpha  \beta  +  \beta  {}^{2}  +  \alpha  \beta  +  { \alpha }^{2} }{ \alpha  \beta }

 \rightarrow \frac{ { \alpha }^{2}  +  { \beta }^{2} + 2 \alpha  \beta  }{ \alpha  \beta }

 \rightarrow \:   \frac{( \alpha  +  \beta ) {}^{2} }{ \alpha  \beta }

 \rightarrow \:  \frac{( - 4) {}^{2} }{3}

 \rightarrow \:  \frac{16}{3}

★ Product of the zeroes:

(1 +  \frac{  \beta   }{ \alpha  } )(1 +  \frac{ \alpha }{ \beta } )

 \rightarrow \: 1 +  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  +  \frac{ \alpha  \beta }{ \alpha  \beta }

 \rightarrow \:   \frac{2 \alpha  \beta  +  \alpha  {}^{2} +  { \beta }^{2}  }{ \alpha  \beta }

 \rightarrow \:  \frac{( \alpha  +  \beta ) {}^{2} }{  \alpha  \beta  }

 \rightarrow \: \frac{ ( - 4) {}^{2} }{3}

 \rightarrow \:  \frac{16}{3}

But required polynomial:

k {x² - ( sum of zeroes ) x + Product the zeroes}

⇒ x² - 16/3x + 16/3

If k = 3

⇒ 3 { x² - 16/3x + 16/3 }

3x2 - 16x + 16

Answered by Anonymous
2

\huge\mathfrak{Amswer:}

Given:

  • We have been given that α and β are the two zeroes of the polynomial x² + 4x + 3.

To Find:

  • We need to find the polynomial whose zeroes are 1 + β/α and 1 + α/β.

Solution:

The given polynomial is:

p(x) = x² + 4x + 3.

a = 1, b = 4 and c = 3

Sum of zeroes (α + β)

= -b/a

= -4/1______(1)

Product of zeroes (αβ)

=c/a

= 3/1______(2)

Now, using the sum and product of zeroes, we have

Sum of zeroes:

 \sf{ = 1 +  \dfrac{ \beta }{ \alpha }  + 1 +  \dfrac{ \alpha }{ \beta } }

 \implies\sf{  \dfrac{ \alpha  \beta  +  { \beta }^{2} +  \alpha  \beta  +  { \alpha }^{2}  }{ \alpha  \beta }}

 \implies\sf{ \dfrac{ { \alpha }^{2}  + 2 \alpha  \beta  +  { \beta }^{2} }{ \alpha  \beta } }

 \implies\sf{ \dfrac{ { \alpha  +  \beta }^{2} }{ \alpha  \beta }}

Substituting the values from equation 1 and 2, we have

 \mapsto\sf{ \dfrac{ {( - 4)}^{2} }{3} }

 \longrightarrow \sf{ \dfrac{16}{3}  }

Product of zeroes:

 \sf{(1 + \dfrac{ \beta }{ \alpha})(1 +  \dfrac{ \alpha }{ \beta }) }

 \implies\sf{1 +  \dfrac{ \alpha }{ \beta }   +  \dfrac{ \beta }{ \alpha }  +  \dfrac{ \alpha  \beta }{  \alpha  \beta } }

 \implies\sf{ \dfrac{2 \alpha  \beta  +  { \alpha }^{2} +  { \beta }^{2}  }{ \alpha  \beta } }

 \implies\sf{ \dfrac{ { \alpha  +  \beta }^{2} }{ \alpha  \beta } }

 \implies\sf{ \dfrac{ {( - 4)}^{2} }{3} }

 \longrightarrow\sf{ \dfrac{16}{3} }

Now, we can find the polynomial by this formula:

 \mapsto\sf{k{  \times {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta} }

 \longrightarrow\sf{ {x}^{2}   -  \dfrac{16}{3} x +  \dfrac{16}{3} }

Putting k = 3, we have

 \longrightarrow\sf{3 \times  {x}^{2}  -  \dfrac{16}{3} x +  \dfrac{16}{3} }

 \longrightarrow\sf{3 {x}^{2}  - 16x + 16 }

Hence, the required polynomial is 3x² - 16x + 16.

Similar questions