Math, asked by lingaraj703, 11 months ago

if alpha and beta are the zeroes of the quadratic polynomial f(x)=x2+Px+q form a polynomial whose zeroes are (alpha+beta)square and (alpha-beta) square..​

Attachments:

Answers

Answered by Anonymous
19

SOLUTION ☺️

 =  > we \: have \: polynomial \:  f(x) =  {x}^{2}  + px + q \\  =  > roots \: are \:  \alpha  \:  \: and \:  \:  \beta   \\  =  > we \: know \: from \: relationship \: between \: zeros \: and \: coefficient \:  \\  =  > sum \: of \: zeros =  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }  \\  =  > ( \alpha  +  \beta ) {}^  \:  \:  \:  =  - p...............(1) \\  =  > taking \: whole \: square \: on \: both \: side \: we \: get \\  =  >  {( \alpha  +  \beta )}^{2}  =  {p}^{2} ..............(2) \\  =  >   { \alpha }^{2}  +   { \beta }^{2}  + 2 \alpha  \beta  =  {p}^{2}  \\  >  { \alpha }^{2}  { \beta }^{2}  + 2 \alpha  \beta  - 2 \alpha  \beta  + 2 \alpha  \beta  =  {p}^{2}  \\  =  >  { \alpha }^{2}  +  { \beta }^{2}  - 2 \alpha  \beta  + 4 \alpha  \beta  =  {p}^{2}  \\  =  > ( { \alpha  -  \beta )}^{2}  + 4 \alpha  \beta  =  {p}^{2} ................(3) \\  and \\  =  > products \: of \: zeros =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }  \\ so \\  =  >  \alpha  \beta  = q \:  \: (substitute \: that \: value \: in \: equation \: (3) \: we \: get) \\  =  > ( \alpha  -  \beta ) {}^{2}  + 4(q) =  {p}^{2}  \\  =  >  {( \alpha  -  \beta )}^{2}  + 4q =  {p}^{2} \\  =  >  {( \alpha  -  \beta )}^{2}  =  {p}^{2}  - 4q..................(4) \\  =  > now \:we \:  add \: equation \: (2) \: and \: (4) \: get \\  =  >  {( \alpha  +  \beta )}^{2}  +  {( \alpha  -  \beta )}^{2}  =  {p}^{2}  + {p}^{2}  - 4q \\  =  > 2 {p}^{2}  - 4q \\  =  > and \: we \: multiply \: equation \: (2) \: and \: (4) \: get \\  =  >  {( \alpha  +  \beta )}^{2} \times  {( \alpha  -  \beta )}^{2}   =  {p}^{2} ( {p}^{2}  - 4q) \\  =  >  {p}^{4}  - 4 {p}^{2} q \\  =  > as \: we \: know \: formula \: for \: polynomial \: when \: sum \: of \: zeros \: and \: product \: of \: zeros \: we \: know  \\  =  > polynomial = k( {x}^{2}  - (sum \: of \: zeros)  \times (product \: of \: zeros)) \\  =  > here \: k \: is \: any \: non \: zero \: real \: number \\  =  > substitute \: value \: get \\  =  > quadratic \: polynomial \:  = k( {x}^{2}  - (2 {p}^{2}  - 4q)x + (2 {p}^{4}  - 4p {}^{2} q) \\  \\  =  >  {x}^{2}  - (2 {p}^{2}  - 4q)x + (2p {}^{4}  - 4p {}^{2}q) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (\: taking \: k = 1)

hope it helps ✔️☺️

Similar questions