Math, asked by sarikaarsh, 1 year ago

If alpha and beta are the zeroes of the quadratic polynomial x^2 + 2 + 1 , then find the quadratic polynomial whose zeroes are alpha square beta and beta square alpha.

Answers

Answered by Anonymous
3

\mathfrak{\large{\underline{\underline{Given:-}}}}

\alphaand \beta are the zeroes of the quadratic equation.

\mathfrak{\large{\underline{\underline{To find:-}}}}

The quadratic equation whose zeroes is \ { \alpha }^{2}  +  { \beta }^{2} .

\mathfrak{\large{\underline{\underline{Solution:-}}}}

By comparing the quadratic equation with its standard form.

__________________________________________

Let a = 1 ,b = 2 and c = 1

Then,

\boxed{\sf{ \alpha  +  \beta  =  \frac{ - b}{a}  }}

\implies \ \alpha  +  \beta  =  \frac{ - 2}{1}

\implies \ \alpha  +  \beta  = -2 eq. 1.

__________________________________________

Now,

\boxed{\sf{   \alpha  \beta  =  \frac{c}{a}  }}

\implies \ alpha  \beta  =  \frac{1}{1}

\implies \alpha  \beta  = 1 eq. 2.

__________________________________________

By using suitable identities

\ ( \alpha  +  \beta ) ^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta

from eq.1. and eq. 2. we get,

\implies \{( -2 )}^{2} =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \times 1

\implies \{(4 - 1)}  =  { \alpha }^{2}  +  { \beta }^{2}

\implies \ { \alpha }^{2}  +  { \beta }^{2}  = 3

__________________________________________

The required quadratic equation is given by :-

\boxed{\sf{{x}^{2}  - ( \alpha^2  +  \beta^2 )x +  \alpha^2 \beta^2  }}

\implies \  {x}^{2}  - 3x +  {1}^{2}

\implies \ {x}^{2}  - 3x + 1 is required quadratic equation.


Blaezii: Nice
trisha10433: nice bro
Anonymous: thanks
Similar questions