If alpha and beta are the zeroes of the quadratic polynomial p(x)=ax2+bx+c then evaluate α-β
Answers
Step-by-step explanation:
p(x) = ax² + bx + c
zeroes are Alpha & Beta of a above quadratic polynomial .
alpha + beta = -b/a
alpha*beta = c/a
---------------------------
alpha - Beta = √(alpha+beta)²-4alpha*beta
= √(b²/a²) -4c/a
= (√b²-4ac) / a = √D/a
from Shridharacharya formula :- (b²-4ac) = D
Answer:
√{ [ (ab² - 4c³)/c²a ] }
Step-by-step explanation:
Given that α and β are the zeroes of the polynomial p(x) = ax² + bx + c.
On comparing this with ax² + bx + c, we get
a = a, b = b, c = c
Now,
• Sum of zeroes = α + β = - b/c
→ - b/c
• Product of zeroes = αβ = c/a
→ c/a
Now,
- Squaring both sides of sum of zeroes
→ (α + β)² = (- b/c)²
Identity : (a + b)² = a² + b² + 2ab
Here, a = α, b = β
→ α² + β² + 2αβ = b²/c²
→ α² + β² + 2(c/a) = b²/c²
→ α² + β² + (2c/a) = b²/c²
→ α² + β² = (b²/c²) - (2c/a)
→ α² + β² = (ab² - 2c³)/c²a
Now,
- Squaring of α - β
→ (α - β)²
Identity : (a - b)² = a² + b² - 2ab
Here, a = α, b = β
→ α² + β² - 2αβ
→ [ (ab² - 2c³)/c²a ] - 2(c/a)
→ [ (ab² - 2c³)/c²a ] - (2c/a)
→ [ (ab² - 2c³ - 2c³)/c²a ]
→ [ (ab² - 4c³)/c²a ]
We have
→ (α - β)² = [ (ab² - 4c³)/c²a ]
→ α - β = √{ [ (ab² - 4c³)/c²a ] }