Math, asked by bhakti007, 11 months ago

If alpha and beta are the zeroes of the quadratic polynomial 5x^2 - 16x - 45, then find the value of alpha/beta + beta/alpha

Answers

Answered by EliteSoul
45

Given

Zeros of polynomial are a & ß

Quadratic polynomial = 5x² - 16x - 45

To Find

Value of : a/ß + ß/a

Solution

Here, the zeros are a & ß.

We can find value of a & ß by factorization method :

➝ 5x² - 16x - 45 = 0

➝ 5x² - 25x + 9x - 45 = 0

➝ 5x(x - 5) + 9(x - 5) = 0

➝ (5x + 9)(x - 5) = 0

➝ 5x + 9 = 0 or, x - 5 = 0

➝ 5x = -9 or, x = 5

x = -9/5 or, x = 5

Therefore,

Zeros of polynomial are : -9/5 & 5

Here,

  • a = -9/5
  • ß = 5

We have to find value of (a/ß) + (ß/a)

Putting values we get :

⇒ a/ß + ß/a = (-9/5)/5 + 5/(-9/5)

⇒ a/ß + ß/a = -9/25 + (25/-9)

⇒ a/ß + ß/a = (81 + 625)/-225

⇒ a/ß + ß/a = (706)/-225

⇒ a/ß + ß/a = -706/225

Therefore,

Required value = -706/225


EliteSoul: Thanks for the brainliest!
Answered by Anonymous
6

Answer:

Given \: \alpha \:  and \:  \beta  \: are \: the \: zeros \: of \: quadratic \: poynomial.

Given polynomial f(x) =5x²-16x-45.

On solving this quadratic equation by middle term factorization method ;

5x²-16x-45 =0

5x²-25x+9x-45=0

5x(x-5)+9(x-5)=0

(5x+9)(x-5)=0

x = - 9/5 or 5. [zeros of the polynomial]

And \:  so,  \alpha  =   - \frac{9}{5}  \: and \:  \beta  = 5.

To Find :

 \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }

 =  >  \frac{  - \frac{9}{5} }{5}  +  \frac{5}{  - \frac{9}{5} }

 =  > ( -  \frac{9}{5}  \times  \frac{1}{5} ) + ( 5 \times -   \frac{ 5}{9} )

 =  >(  -  \frac{9}{25}  - \frac{25}{9})

 =  >(  -  \frac{706}{225} )

Therefore, \:  the  \: value  \: of \:  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \: is \: ( -  \frac{706}{225} ).

Similar questions