Math, asked by stardum73, 11 months ago

If alpha and beta are the zeroes of the quadratic polynomial fx = ax^2 +bx + c , then evaluate :
a(alpha^2/beta+beta^2/alpha) + b (alpha / beta + beta / alpha )..

SOLVE PLZZ DOSTO

Answers

Answered by Anonymous
3

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf\orange{Given:}

\sf{\implies{f(x)=ax^{2}+bx+c}}

\sf\pink{To \ find:}

\sf{a(\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha})+b(\frac{\alpha}{\beta})}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ polynomial \ is}

\sf{\implies{ax^{2}+bx+c}}

\sf{Here, \ a=a, \ b=b \ and \ c=c}

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

\sf{\therefore{\alpha+\beta=\frac{-b}{a}...(1)}}

\sf{Product \ of \ roots=\frac{c}{a}}

\sf{\therefore{\alpha×\beta=\frac{c}{a}...(2)}}

\sf{\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2(\alpha×\beta)}

\sf{\therefore{\alpha^{2}+\beta^{2}=(\frac{-b}{a})^{2}-2(\frac{c}{a})}}

\sf{\therefore{\alpha^{2}+\beta^{2}=\frac{b^{2}}{a^{2}}-\frac{2c}{a}}}

\sf{\therefore{\alpha^{2}+\beta^{2}=\frac{b^{2}-2ac}{a^{2}}...(3)}}

\sf{\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3\alpha\beta(\alpha+\beta)}

\sf{\therefore{\alpha^{3}+\beta^{3}=(\frac{-b}{a})^{3}-3×\frac{c}{a}×\frac{-b}{a}}}

\sf{\alpha^{3}+\beta^{3}=\frac{-b^{3}}{a^{3}}+\frac{3bc}{a^{2}}}

\sf{\therefore{\alpha^{3}+\beta^{3}=\frac{-b^{3}-3abc}{a^{3}}...(4)}}

________________________________

\sf{\implies{a(\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha})+b(\frac{\alpha}{\beta}+\frac{\beta}{\alpha})}}

\sf{\implies{a(\frac{\alpha^{3}+\beta^{3}}{\alpha×\beta})+b(\frac{\alpha^{2}+\beta^{2}}{\alpha×\beta})}}

\sf{From \ (1), \ (2), \ (3) \ and (4)}

\sf{\implies{a(\frac{\frac{-b^{3}-3abc}{3a^{3}}}{\frac{c}{a}})+b(\frac{\frac{b^{2}-2ac}{a^{2}}}{\frac{c}{a}})}}

\sf{\implies{a(\frac{-b^{3}-3abc}{3a^{3}}×\frac{a}{c})+b(\frac{b^{2}-2ac}{a^{2}}×\frac{a}{c})}}

\sf{\implies{\frac{-b^{3}-3a^{2}bc}{3a^{2}c}-\frac{b^{3}-2ac}{ac}}}

\sf{}


Anonymous: superb answer
Answered by LegendzTech
0

Answer:

Correct me if there is any mistake...

Hope it helps you...

Step-by-step explanation:

Attachments:
Similar questions