English, asked by Shrisu, 10 months ago

If alpha and beta are the zeroes of the quadratic polynomial 2x^2 - 5x + 3, then find the value of 1/2 alpha + 1/2 beta


Agr faltu ka answer diya na to fir dekh lena​

Answers

Answered by Abhishek474241
45

Question

If 1/alpha and 1/beta are the zeroes of the quadratic polynomial 2x^2 - 5x + 3, then find the value of 1/2 alpha + 1/2 beta

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

A polynomial

X²+3√3+6

{\sf{\green{\underline{\large{To\:Find}}}}}

  • \tt\dfrac{1}{\alpha}{+}\dfrac{1}{\beta}

{\sf{\pink{\underline{\Large{Explanation}}}}}

Let the zeroes of the polynomial be\tt\dfrac{1}{\alpha}{and}\dfrac{1}{\beta}

Then,

\tt\dfrac{1}{\alpha}{+}\dfrac{1}{\beta}\dfrac{-b}{a}

&

\tt\dfrac{1}{2\alpha}{\times}\dfrac{1}{2\beta}\dfrac{c}{a}

Here,

  • P(x)=2x²-5x+3

a=2

b=-5

C=3

\tt\dfrac{1}{\alpha}{+}\dfrac{1}{\beta}\dfrac{5}{2}

&

\tt\dfrac{1}{2\alpha}{\times}\dfrac{1}{2\beta}\dfrac{3}{2}

Solving

\tt\dfrac{1}{\alpha}{+}\dfrac{1}{\beta}=\dfrac{-b}{a}

\tt\implies\dfrac{{\alpha}{+}{\beta}}{2\alpha\beta}

utting values

\tt\implies\dfrac{{\alpha+\beta}}{2\alpha\beta}

\rightarrow\tt\dfrac{\frac{5}{2}}{2\times{\frac{3}{2}}}

\rightarrow\tt\dfrac{\frac{5}{2}}{2\times{\frac{3}{2}}}

=>5/6

Similar questions