Math, asked by kankana3095, 9 months ago

If alpha and beta are the zeroes of the quadratic polynomial (x) = 3x2 + x − 6, then find a quadratic polynomial whose zeroes are ( alpha + beta ) and alpha beta

Answers

Answered by shravanigondhalekar2
2

Answer:

hope this helps you.....

Attachments:
Answered by mysticd
2

 Compare \: Quadratic \: polynomial

 p(x) = 3x^{2} +x - 6 \: with\: ax^{2} + bx +c ,

 we \: get

 a = 3 , b = 1 \: and \: c = -6

 Given \: \alpha \: and \: \beta \: are \: the

 Zeroes \: of \: p(x)

 i) \alpha + \beta = \frac{ -b}{a}

 = \frac{1}{3} \: --(1)

 ii) \alpha  \beta = \frac{ c}{a}

 = \frac{-6}{3}

 = -2  \: --(2)

 \blue{ If \: \alpha + \beta \: and \: \alpha  \beta \: are }

 \blue{zeroes \: of \: a \: Quadratic \: polynomial }

 iii ) Sum \: of \: the \: zeroes

 = \alpha + \beta + \alpha  \beta

 = \frac{1}{3} - 2

 = \frac{ 1 - 6}{3}

 = \frac{ -5}{3}\: --(3)

 iv ) Product\: of \: the \: zeroes

 =( \alpha + \beta) (\alpha  \beta)

 = \frac{1}{3} \times 2

 = \frac{2}{3}\: --(4)

 \pink{ Form \: of \: Quadratic \: polynomial\:is: }

 = k[ x^{2} - ( Sum \: of \: the \: zeroes)x+product \: of \: the \: zeroes ]

 = k[ x^{2} - \frac{ -5}{3} x + \frac{2}{3}]

 If \: k = 3 \: then

 = 3x^{2} + 5x + 2

Therefore.,

 \red{ Required \: polynomial : }

 \green { = 3x^{2} + 5x + 2}

•••♪

Similar questions