Math, asked by sriharinidhanapriya, 1 year ago

if alpha and beta are the zeroes of the quadratic polynomial f{x}=kx^2+4x+4 such that alpha^2+beta^2=24,find the value of k.

Answers

Answered by Anonymous
160

Given :-

  • \sf \: \alpha  \: and \:  \beta \: are \: zeroes \: of \green{\: k {x}^{2} + 4x + 4 }

To Find :-

  • Value of K

Solution :-

\dag\underline{\sf\green{{\sf Sum\:of\:Zeros:- }}}

:\implies\sf \alpha+\beta=\dfrac{-b}{a}

\sf :\implies\: \alpha + \beta  =  -  \: \dfrac{4}{k} -  -  - (1)

\dag\underline{\sf\green{{\sf Product\:of\:Zeros :-}}}

\sf:\implies\: \alpha \beta \: =\: \dfrac{4}{k} -  -  - (2)

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀\small\underline{\pmb{\sf According \: to \: the \: question  :-}}\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\pink{ :\implies { \alpha }^{2}  +  { \beta }^{2} = 24}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\: :\implies{(\alpha +  \beta ) }^{2} - 2 \alpha  \beta = 24\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies {\bigg( - \dfrac{4}{k} \bigg) }^{2} - 2 \times \dfrac{4}{k}   = 24\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies\dfrac{16}{ {k}^{2} }  - \dfrac{8}{k}  = 24\\

\sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \: \::\implies\dfrac{16 - 8k}{ {k}^{2} } = 24\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies2 - k =  {3k}^{2} \\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\: :\implies{3k}^{2} + k - 2 = 0\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\: :\implies{3k}^{2} + 3k - 2k - 2 = 0\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies3k(k + 1) - 2(k + 1) = 0\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies(k + 1)(3k - 2) = 0\\

\sf \pink{\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \::\implies\:k =  - 1 \:  \:  \: or \:  \:  \: k = \dfrac{2}{3}}\\\\

\therefore\:\underline{\textsf{ Value of K is \textbf{-1 \: Or \:  2/3}}}.\\

Similar questions