Math, asked by neinuo, 3 months ago

if alpha and beta are the zeroes of the quadratic polynomial 2x²-5x +7, then find the quadratic polynomial whose zeros are 3alpha +4 beta 4 alpha +3 beta.​

Answers

Answered by mathdude500
1

Answer:

\boxed{\sf \: g(x) =  \frac{k}{2} \bigg(2 {x}^{2} - 35 x + 67 \bigg), \:  \: where \:k \:  \ne \: 0 \: } \\  \\

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given that,

\sf \:  \alpha \: and \:   \beta  \: are \: zeroes \: of \: polynomial \:  {2x}^{2} - 5x + 7 \\  \\

We know,

\boxed{{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\  \\

\sf \:  \implies \:  \alpha  +  \beta  =  - \dfrac{( - 5)}{2}  = \dfrac{5}{2}  \\  \\

Also,

\boxed{{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}} \\  \\

\sf \:  \implies \:  \alpha  \beta  = \dfrac{7}{2}  \\  \\

Now,

We have to find quadratic polynomial whom zeroes are

3\alpha + 4\beta and 4\alpha + 3\beta

Now, Consider

\sf \: S = (3 \alpha  +  4\beta) + (4 \alpha  + 3 \beta ) \\  \\

\sf \: S = 7 \alpha  +  7\beta \\  \\

\sf \: S = 7 (\alpha  +  \beta) \\  \\

\sf \: S = 7  \times \dfrac{5}{2}  \\  \\

\sf \: \bf\implies \:S = \dfrac{35}{2}  \\  \\

Now, Consider

\sf \: P = (3 \alpha  +  4\beta)  \times  (4 \alpha  + 3 \beta ) \\  \\

\sf \: P =  {12 \alpha }^{2}  + 9 \alpha  \beta  + 16 \alpha  \beta  +  {12 \beta }^{2}  \\  \\

\sf \: P =  {12 \alpha }^{2}  +  {12 \beta }^{2} + 25 \alpha  \beta   \\  \\

\sf \: P =  {12 \alpha }^{2}  +  {12 \beta }^{2} + 24 \alpha  \beta  +  \alpha  \beta   \\  \\

\sf \: P =  12({ \alpha }^{2}  +  { \beta }^{2} + 2 \alpha  \beta)  +  \alpha  \beta   \\  \\

\sf \: P =  12 \times \dfrac{5}{2}  + \dfrac{7}{2}    \\  \\

\sf \: P =   \dfrac{60}{2}  + \dfrac{7}{2}    \\  \\

\sf \: \bf\implies \:P =   \dfrac{67}{2} \\  \\

So, Required quadratic polynomial having sum of zeroes as S and product of zeroes as P, is given by

\sf \: g(x) = k( {x}^{2} - Sx + P), \:  \: where \:k \:  \ne \: 0 \\  \\

\sf \: g(x) = k\bigg( {x}^{2} - \dfrac{35}{2} x + \dfrac{67}{2} \bigg), \:  \: where \:k \:  \ne \: 0 \\  \\

\sf \: \bf\implies \:g(x) =  \frac{k}{2} \bigg(2 {x}^{2} - 35 x + 67 \bigg), \:  \: where \:k \:  \ne \: 0 \\  \\

Similar questions